首页> 美国卫生研究院文献>Journal of Cancer >Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study
【2h】

Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study

机译:深度卷积神经网络VGG-16模型在细胞学图像中鉴别诊断甲状腺乳头状癌的初步研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Objective: In this study, we exploited a VGG-16 deep convolutional neural network (DCNN) model to differentiate papillary thyroid carcinoma (PTC) from benign thyroid nodules using cytological images.>Methods: A pathology-proven dataset was built from 279 cytological images of thyroid nodules. The images were cropped into fragmented images and divided into a training dataset and a test dataset. VGG-16 and Inception-v3 DCNNs were trained and tested to make differential diagnoses. The characteristics of tumor cell nucleus were quantified as contours, perimeter, area and mean of pixel intensity and compared using independent Student's t-tests.>Results: In the test group, the accuracy rates of the VGG-16 model and Inception-v3 on fragmented images were 97.66% and 92.75%, respectively, and the accuracy rates of VGG-16 and Inception-v3 in patients were 95% and 87.5%, respectively. The contours, perimeter, area and mean of pixel intensity of PTC in fragmented images were more than the benign nodules, which were 61.01±17.10 vs 47.00±24.08, p=0.000, 134.99±21.42 vs 62.40±29.15, p=0.000, 1770.89±627.22 vs 1157.27±722.23, p=0.013, 165.84±26.33 vs 132.94±28.73, p=0.000), respectively.>Conclusion: In summary, after training with a large dataset, the DCNN VGG-16 model showed great potential in facilitating PTC diagnosis from cytological images. The contours, perimeter, area and mean of pixel intensity of PTC in fragmented images were more than the benign nodules.
机译:>目的:在这项研究中,我们利用VGG-16深层卷积神经网络(DCNN)模型通过细胞学图像将甲状腺乳头状癌(PTC)与甲状腺良性结节区分开来。>方法 >:从279个甲状腺结节的细胞学图像中建立了经过病理证实的数据集。图像被裁剪成碎片图像,并分为训练数据集和测试数据集。对VGG-16和Inception-v3 DCNN进行了培训和测试,以进行鉴别诊断。将肿瘤细胞核的特征量化为轮廓,周长,面积和像素强度的平均值,并使用独立的Student t检验进行比较。>结果:在测试组中,VGG-16的准确率碎片图像上的模型和Inception-v3分别为97.66%和92.75%,患者中VGG-16和Inception-v3的准确率分别为95%和87.5%。碎片图像中PTC的轮廓,周长,面积和像素强度平均值均大于良性结节,分别为61.01±17.10 vs 47.00±24.08,p = 0.000,134.99±21.42 vs 62.40±29.15,p = 0.000,1770.89分别为±627.22 vs 1157.27±722.23,p = 0.013,165.84±26.33 vs 132.94±28.73,p = 0.000)。>结论:总之,在使用大型数据集训练后,DCNN VGG-16该模型在促进从细胞学影像诊断PTC中显示出巨大的潜力。碎片图像中PTC的轮廓,周长,面积和像素强度平均值均大于良性结节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号