首页> 美国卫生研究院文献>Educational and Psychological Measurement >Detecting Cheating in Large-Scale Assessment: The Transfer of Detectors to New Tests
【2h】

Detecting Cheating in Large-Scale Assessment: The Transfer of Detectors to New Tests

机译:在大规模评估中检测作弊:将检测器转移到新测试

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent approaches to the detection of cheaters in tests employ detectors from the field of machine learning. Detectors based on supervised learning algorithms achieve high accuracy but require labeled data sets with identified cheaters for training. Labeled data sets are usually not available at an early stage of the assessment period. In this article, we discuss the approach of adapting a detector that was trained previously with a labeled training data set to a new unlabeled data set. The training and the new data set may contain data from different tests. The adaptation of detectors to new data or tasks is denominated as transfer learning in the field of machine learning. We first discuss the conditions under which a detector of cheating can be transferred. We then investigate whether the conditions are met in a real data set. We finally evaluate the benefits of transferring a detector of cheating. We find that a transferred detector has higher accuracy than an unsupervised detector of cheating. A naive transfer that consists of a simple reuse of the detector increases the accuracy considerably. A transfer via a self-labeling (SETRED) algorithm increases the accuracy slightly more than the naive transfer. The findings suggest that the detection of cheating might be improved by using existing detectors of cheating at an early stage of an assessment period.
机译:最近在测试中检测作弊者的方法采用了机器学习领域的检测器。基于监督学习算法的检测器可实现高准确率,但需要带有已识别作弊者的标记数据集进行训练。标记数据集通常在评估期的早期阶段不可用。在本文中,我们讨论了将之前使用标记训练数据集训练的检测器适应新的未标记数据集的方法。训练数据集和新数据集可能包含来自不同测试的数据。检测器对新数据或任务的适应在机器学习领域被称为迁移学习。我们首先讨论可以转移作弊检测器的条件。然后,我们调查真实数据集是否满足条件。最后,我们评估了转移作弊检测器的好处。我们发现,转移的检测器比无监督的作弊检测器具有更高的准确性。由检测器的简单重用组成的朴素传输可显著提高准确性。通过自标记 (SETRED) 算法进行的传输比简单传输提高的准确性略高。研究结果表明,在评估期的早期阶段使用现有的作弊检测器可能会改善对作弊的检测。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号