首页> 美国卫生研究院文献>Journal of Computational Biology >Complex Variant Discovery Using Discordant Cluster Normalization
【2h】

Complex Variant Discovery Using Discordant Cluster Normalization

机译:使用不一致聚类归一化的复杂变体发现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complex genomic structural variants (CGSVs) are abnormalities that present with three or more breakpoints, making their discovery a challenge. The majority of existing algorithms for structural variant detection are only designed to find simple structural variants (SSVs) such as deletions and inversions; they fail to find more complex events such as deletion–inversions or deletion–duplications, for example. In this study, we present an algorithm named CleanBreak that employs a clique partitioning graph-based strategy to identify collections of SSV clusters and then subsequently identifies overlapping SSV clusters to examine the search space of possible CGSVs, choosing the one that is most concordant with local read depth. We evaluated CleanBreak's performance on whole genome simulated data and a real data set from the 1000 Genomes Project. We also compared CleanBreak with another algorithm for CGSV discovery. The results demonstrate CleanBreak's utility as an effective method to discover CGSVs.
机译:复杂基因组结构变异 (CGSV) 是出现三个或更多断点的异常,这使得它们的发现成为一项挑战。大多数现有的结构变异检测算法仅用于查找简单的结构变异 (SSV),例如缺失和倒置;例如,它们无法找到更复杂的事件,例如 deletion – inversion 或 deletion – duplications。在这项研究中,我们提出了一种名为 CleanBreak 的算法,该算法采用基于图的派系分区策略来识别 SSV 集群的集合,然后识别重叠的 SSV 集群,以检查可能的 CGSV 的搜索空间,选择与本地读取深度最一致的一个。我们评估了 CleanBreak 在全基因组模拟数据和来自 1000 个基因组项目的真实数据集上的性能。我们还将 CleanBreak 与另一种用于 CGSV 发现的算法进行了比较。结果表明,CleanBreak 是发现 CGSV 的有效方法。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号