首页> 美国卫生研究院文献>Educational and Psychological Measurement >Testing the Performance of Level-Specific Fit Evaluation in MCFA Models With Different Factor Structures Across Levels
【2h】

Testing the Performance of Level-Specific Fit Evaluation in MCFA Models With Different Factor Structures Across Levels

机译:在各水平具有不同因子结构的 MCFA 模型中检验特定水平拟合评估的性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A Monte Carlo study was conducted to compare the performance of a level-specific (LS) fit evaluation with that of a simultaneous (SI) fit evaluation in multilevel confirmatory factor analysis (MCFA) models. We extended previous studies by examining their performance under MCFA models with different factor structures across levels. In addition, various design factors and interaction effects between intraclass correlation (ICC) and misspecification type (MT) on their performance were considered. The simulation results demonstrate that the LS outperformed the SI in detecting model misspecification at the between-group level even in the MCFA model with different factor structures across levels. Especially, the performance of LS fit indices depended on the ICC, group size (GS), or MT. More specifically, the results are as follows. First, the performance of root mean square error of approximation (RMSEA) was more promising in detecting misspecified between-level models as GS or ICC increased. Second, the effect of ICC on the performance of comparative fit index (CFI) or Tucker–Lewis index (TLI) depended on the MT. Third, the performance of standardized root mean squared residual (SRMR) improved as ICC increased and this pattern was more clear in structure misspecification than in measurement misspecification. Finally, the summary and implications of the results are discussed.
机译:进行了一项蒙特卡洛研究,以比较多级验证性因子分析 (MCFA) 模型中特定水平 (LS) 拟合评估与同步 (SI) 拟合评估的性能。我们通过检查它们在不同层次不同因子结构的 MCFA 模型下的表现来扩展以前的研究。此外,还考虑了各种设计因素以及类内相关性 (ICC) 和错误指定类型 (MT) 之间的交互作用对其性能的影响。仿真结果表明,即使在跨级别因子结构不同的 MCFA 模型中,LS 在组间水平检测模型错误规范方面也优于 SI。特别是,LS 拟合指数的性能取决于 ICC、组大小 (GS) 或 MT。更具体地说,结果如下。首先,随着 GS 或 ICC 的增加,近似均方根误差 (RMSEA) 在检测水平间错误指定模型方面的性能更有希望。其次,ICC 对比较拟合指数 (CFI) 或 Tucker-Lewis 指数 (TLI) 性能的影响取决于 MT。第三,标准化均方根残差 (SRMR) 的性能随着 ICC 的增加而提高,并且这种模式在结构错误规范中比在测量错误规范中更明显。最后,讨论了结果的总结和含义。

著录项

  • 期刊名称 Educational and Psychological Measurement
  • 作者

    Bitna Lee; Wonsook Sohn;

  • 作者单位
  • 年(卷),期 2022(82),6
  • 年度 2022
  • 页码 1153
  • 总页数 27
  • 原文格式 PDF
  • 正文语种
  • 中图分类 病理学;
  • 关键词

    机译:多级验证性因子分析 (MCFA)、模型评估方法、级别特异性 (LS) 拟合评估、同步 (SI) 拟合评估、部分饱和模型 (PS) 方法、蒙特卡洛模拟研究;
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号