首页> 美国卫生研究院文献>The Journal of Biological Chemistry >R213I mutation in release factor 2 (RF2) is one step forward for engineering an omnipotent release factor in bacteria Escherichia coli
【2h】

R213I mutation in release factor 2 (RF2) is one step forward for engineering an omnipotent release factor in bacteria Escherichia coli

机译:释放因子2(RF2)中的R213I突变是工程改造细菌大肠杆菌中全能释放因子的第一步

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The current understanding of the specificity of the bacterial class I release factors (RFs) in decoding stop codons has evolved beyond a simple tripeptide anticodon model. A recent molecular dynamics study for deciphering the principles for specific stop codon recognition by RFs identified Arg-213 as a crucial residue on Escherichia coli RF2 for discriminating guanine in the third position (G3). Interestingly, Arg-213 is highly conserved in RF2 and substituted by Ile-196 in the corresponding position in RF1. Another similar pair is Leu-126 in RF1 and Asp-143 in RF2, which are also conserved within their respective groups. With the hypothesis that replacement of Arg-213 and Asp-143 with the corresponding RF1 residues will reduce G3 discrimination by RF2, we swapped these residues between E. coli RF1 and RF2 by site-directed mutagenesis and characterized their preference for different codons using a competitive peptide release assay. Among these, the R213I mutant of RF2 showed 5-fold improved reading of the RF1-specific UAG codon relative to UAA, the universal stop codon, compared with the wild type (WT). In-depth fast kinetic studies revealed that the gain in UAG reading by RF2 R213I is associated with a reduced efficiency of termination on the cognate UAA codon. Our work highlights the notion that stop codon recognition involves complex interactions with multiple residues beyond the PXT/SPF motifs. We propose that the R213I mutation in RF2 brings us one step forward toward engineering an omnipotent RF in bacteria, capable of reading all three stop codons.
机译:目前对细菌I类释放因子(RFs)在解码终止密码子中的特异性的了解已经超越了简单的三肽反密码子模型。一项最近的分子动力学研究旨在阐明RF特异性终止密码子识别的原理,将Arg-213鉴定为大肠杆菌RF2上用于区分第三位鸟嘌呤的重要残基(G3)。有趣的是,Arg-213在RF2中高度保守,并在RF1中的相应位置被Ile-196取代。另一对相似的是RF1中的Leu-126和RF2中的Asp-143,它们也保存在各自的组中。假设用相应的RF1残基替换Arg-213和Asp-143将减少RF2对G3的歧视,我们通过定点诱变在大肠杆菌RF1和RF2之间交换这些残基,并使用竞争性肽释放测定。其中,与野生型(WT)相比,RF2的R213I突变体显示RF1特异性UAG密码子的阅读相对于通用终止密码子UAA提高了5倍。深入的快速动力学研究表明,RF2 R213I的UAG读数增加与相关UAA密码子的终止效率降低有关。我们的工作突显了终止密码子识别涉及与PXT / SPF主题之外的多个残基的复杂相互作用的概念。我们认为,RF2中的R213I突变使我们朝着在细菌中构建能读取所有三个终止密码子的全能RF迈出了一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号