首页> 美国卫生研究院文献>Yearbook of Medical Informatics >Clinical Informatics Approaches to Understand and Address Cancer Disparities
【2h】

Clinical Informatics Approaches to Understand and Address Cancer Disparities

机译:了解和解决癌症差异的临床信息学方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objectives : Disparities in cancer incidence and outcomes across race, ethnicity, gender, socioeconomic status, and geography are well-documented, but their etiologies are often poorly understood and multifactorial. Clinical informatics can provide tools to better understand and address these disparities by enabling high-throughput analysis of multiple types of data. Here, we review recent efforts in clinical informatics to study and measure disparities in cancer. Methods : We carried out a narrative review of clinical informatics studies related to cancer disparities and bias published from 2018-2021, with a focus on domains such as real-world data (RWD) analysis, natural language processing (NLP), radiomics, genomics, proteomics, metabolomics, and metagenomics. Results : Clinical informatics studies that investigated cancer disparities across race, ethnicity, gender, and age were identified. Most cancer disparities work within clinical informatics used RWD analysis, NLP, radiomics, and genomics. Emerging applications of clinical informatics to understand cancer disparities, including proteomics, metabolomics, and metagenomics, were less well represented in the literature but are promising future research avenues. Algorithmic bias was identified as an important consideration when developing and implementing cancer clinical informatics techniques, and efforts to address this bias were reviewed. Conclusions : In recent years, clinical informatics has been used to probe a range of data sources to understand cancer disparities across different populations. As informatics tools become integrated into clinical decision-making, attention will need to be paid to ensure that algorithmic bias does not amplify existing disparities. In our increasingly interconnected medical systems, clinical informatics is poised to untap the full potential of multi-platform health data to address cancer disparities.
机译:目的 : 种族、民族、性别、社会经济地位和地理因素的癌症发病率和结果差异有据可查,但其病因往往知之甚少且具有多因素性。临床信息学可以通过对多种类型的数据进行高通量分析,提供工具来更好地了解和解决这些差异。在这里,我们回顾了临床信息学研究和测量癌症差异的最新努力。方法 : 我们对 2018-2021 年发表的与癌症差异和偏倚相关的临床信息学研究进行了叙述性回顾,重点关注真实世界数据 (RWD) 分析、自然语言处理 (NLP)、放射组学、基因组学、蛋白质组学、代谢组学和宏基因组学等领域。结果 : 确定了调查种族、民族、性别和年龄之间癌症差异的临床信息学研究。大多数癌症差异在临床信息学中使用 RWD 分析、NLP、放射组学和基因组学起作用。临床信息学用于理解癌症差异的新兴应用,包括蛋白质组学、代谢组学和宏基因组学,在文献中代表性较少,但有希望的未来研究途径。在开发和实施癌症临床信息学技术时,算法偏倚被确定为一个重要的考虑因素,并回顾了解决这种偏倚的努力。结论 : 近年来,临床信息学已被用于探索一系列数据源,以了解不同人群之间的癌症差异。随着信息学工具被整合到临床决策中,需要注意确保算法偏差不会放大现有的差异。在我们日益互联的医疗系统中,临床信息学已准备好释放多平台健康数据的全部潜力,以解决癌症差异。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号