首页> 美国卫生研究院文献>Journal of the National Cancer Institute. Monographs >Machine learning and deep learning tools for the automated capture of cancer surveillance data
【2h】

Machine learning and deep learning tools for the automated capture of cancer surveillance data

机译:用于自动捕获癌症监测数据的机器学习和深度学习工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The National Cancer Institute and the Department of Energy strategic partnership applies advanced computing and predictive machine learning and deep learning models to automate the capture of information from unstructured clinical text for inclusion in cancer registries. Applications include extraction of key data elements from pathology reports, determination of whether a pathology or radiology report is related to cancer, extraction of relevant biomarker information, and identification of recurrence. With the growing complexity of cancer diagnosis and treatment, capturing essential information with purely manual methods is increasingly difficult. These new methods for applying advanced computational capabilities to automate data extraction represent an opportunity to close critical information gaps and create a nimble, flexible platform on which new information sources, such as genomics, can be added. This will ultimately provide a deeper understanding of the drivers of cancer and outcomes in the population and increase the timeliness of reporting. These advances will enable better understanding of how real-world patients are treated and the outcomes associated with those treatments in the context of our complex medical and social environment.
机译:美国国家癌症研究所 (National Cancer Institute) 和美国能源部 (Department of Energy) 的战略合作伙伴关系应用先进的计算和预测机器学习以及深度学习模型,自动从非结构化临床文本中捕获信息,以纳入癌症登记处。应用包括从病理报告中提取关键数据元素、确定病理或放射学报告是否与癌症相关、提取相关生物标志物信息以及识别复发。随着癌症诊断和治疗的复杂性日益增加,使用纯手动方法捕获重要信息变得越来越困难。这些应用高级计算功能自动提取数据的新方法为弥合关键信息差距并创建一个灵活、灵活的平台提供了机会,可以在此平台上添加新的信息源,例如基因组学。这最终将更深入地了解人群中癌症的驱动因素和结果,并提高报告的及时性。这些进步将使人们更好地了解在我们复杂的医疗和社会环境中如何治疗真实世界的患者以及与这些治疗相关的结果。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号