首页> 美国卫生研究院文献>Entropy >An Improved Multi-Source Data Fusion Method Based on the Belief Entropy and Divergence Measure
【2h】

An Improved Multi-Source Data Fusion Method Based on the Belief Entropy and Divergence Measure

机译:基于信仰熵和分解测量的改进的多源数据融合方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dempster–Shafer (DS) evidence theory is widely applied in multi-source data fusion technology. However, classical DS combination rule fails to deal with the situation when evidence is highly in conflict. To address this problem, a novel multi-source data fusion method is proposed in this paper. The main steps of the proposed method are presented as follows. Firstly, the credibility weight of each piece of evidence is obtained after transforming the belief Jenson–Shannon divergence into belief similarities. Next, the belief entropy of each piece of evidence is calculated and the information volume weights of evidence are generated. Then, both credibility weights and information volume weights of evidence are unified to generate the final weight of each piece of evidence before the weighted average evidence is calculated. Then, the classical DS combination rule is used multiple times on the modified evidence to generate the fusing results. A numerical example compares the fusing result of the proposed method with that of other existing combination rules. Further, a practical application of fault diagnosis is presented to illustrate the plausibility and efficiency of the proposed method. The experimental result shows that the targeted type of fault is recognized most accurately by the proposed method in comparing with other combination rules.
机译:Dempster-Shafer(DS)证据理论广泛应用于多源数据融合技术。然而,当宣言高度冲突时,古典DS组合规则无法应对这种情况。为了解决这个问题,本文提出了一种新型多源数据融合方法。所提出的方法的主要步骤如下呈现。首先,在将信仰Jenson-Shannon分歧转变为信仰的相似之处之后获得每条证据的信誉重量。接下来,计算每条证据的信仰熵,并产生信息量的数量权重。然后,在计算加权平均证据之前,统一的可信度权重和信息量的权重统一以在加权平均证据之前生成每条证据的最终权重。然后,在修改的证据上多次使用古典DS组合规则以生成融合结果。数值示例比较了其他现有组合规则的所提出方法的融合结果。此外,提出了故障诊断的实际应用以说明所提出的方法的合理性和效率。实验结果表明,在与其他组合规则相比,通过所提出的方法最准确地识别目标类型的故障。

著录项

  • 期刊名称 Entropy
  • 作者

    Zhe Wang; Fuyuan Xiao;

  • 作者单位
  • 年(卷),期 2019(21),6
  • 年度 2019
  • 页码 611
  • 总页数 22
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    机译:Dempster-Shafer证据理论;信仰熵;信仰Janson-Shannon发散;多源数据融合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号