首页> 美国卫生研究院文献>Nanomaterials >Potential Application of Graphene/Antimonene Herterostructure as an Anode for Li-Ion Batteries: A First-Principles Study
【2h】

Potential Application of Graphene/Antimonene Herterostructure as an Anode for Li-Ion Batteries: A First-Principles Study

机译:石墨烯/锑膜作为锂离子电池阳极的潜在应用:第一原理研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To suppress the volume expansion and thus improve the performance of antimonene as a promising anode for lithium-ion batteries, we have systematically studied the stability, structural and electronic properties of the antimonene capped with graphene (G/Sb heterostructure) upon the intercalation and diffusion of Li atoms by first-principles calculations based on van der Waals (vdW) corrected density functional theory. G/Sb exhibits higher Young’s modulus (armchair: 145.20, zigzag: 144.36 N m−1) and improved electrical conductivity (bandgap of 0.03 eV) compared with those of antimonene. Li favors incorporating into the interlayer region of G/Sb rather than the outside surfaces of graphene and antimonene of G/Sb heterostructure, which is caused by the synergistic effect. The in-plane lattice constants of G/Sb heterostructure expand only around 4.5%, and the interlayer distance of G/Sb increases slightly (0.22 Å) at the case of fully lithiation, which indicates that the capping of graphene on antimonene can effectively suppress the volumetric expansion during the charging process. Additionally, the hybrid G/Sb heterostructure has little influence on the migration behaviors of Li on the outside of graphene and Sb surfaces compared with their free-standing monolayers. However, the migration energy barrier for Li diffusion in the interlayer region (about 0.59 eV) is significantly affected by the geometry structure, which can be reduced to 0.34 eV simply by increasing the interlayer distance. The higher theoretical specific capacity (369.03 mAh g−1 vs 208 mAh g−1 for antimonene monolayer) and suitable open circuit voltage (from 0.11 V to 0.89 V) of G/Sb heterostructure are beneficial for anode materials of lithium-ion batteries. The above results reveal that G/Sb heterostructure may be an ideal candidate of anode for high recycling–rate and portable lithium-ion batteries.
机译:为了抑制体积膨胀,从而改善锑烯的性能作为锂离子电池的有望的阳极,我们系统地研究了在嵌入和扩散时用石墨烯(G / SB异质结构)的锑盖的稳定性,结构和电子性质基于van der Waals(VDW)校正密度函数理论的一致性原理计算的锂原子。 G / SB呈现较高的杨氏模量(扶手椅:145.20,Zigzag:144.36nm-1),与锑烯相比,改善电导率(带隙为0.03eV)。 Li Favors掺入G / Sb的层间区域,而不是石墨烯和G / Sb异质结构的锑的外表,这是由协同效应引起的。 G / Sb异质结构的平面晶格常数仅膨胀约4.5%,并且在完全锂化的情况下,G / Sb的中间层距离略微增加(0.22),这表明石墨烯对锑烯的封盖可以有效地抑制充电过程中的体积扩展。另外,与其独立式单层相比,杂合G / Sb异质结构对石墨烯和Sb表面外部的Li的迁移行为几乎没有影响。然而,在层间区域(约0.59eV)中Li扩散的迁移能量屏障受几何结构的显着影响,通过增加层间距离,可以减少到0.34eV。较高的理论特异性容量(用于锑单层的369.03mAhg-1与208mAhg-1)和合适的开路电压(0.11V至0.89V)的G / Sb异质结构是有益于锂离子电池的阳极材料。上述结果表明,G / SB异质结构可以是高回收率和便携式锂离子电池的阳极的理想候选者。

著录项

  • 期刊名称 Nanomaterials
  • 作者

    Ping Wu; Peng Li; Min Huang;

  • 作者单位
  • 年(卷),期 2019(9),10
  • 年度 2019
  • 页码 1430
  • 总页数 16
  • 原文格式 PDF
  • 正文语种
  • 中图分类 生化遗传学;生化药理学;
  • 关键词

    机译:石墨烯/锑异质结构(G / SB);李吸附特性;扩散能量屏障;理论特定能力;第一原理计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号