首页> 美国卫生研究院文献>Genome Biology >Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data
【2h】

Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data

机译:知识引人注目的神经网络在单细胞排序数据上实现生物学上可解释的深度学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Interpretable deep learning with knowledge-primed neural networks (KPNNs). Deep learning provides a powerful method for predicting cell states from gene expression profiles. However, generic artificial neural networks (ANNs, top row) are “black boxes” that provide little insight into the biology that underlies a successful prediction – for two reasons: (i) hidden nodes and edges in an ANN have no biological equivalent, which makes it difficult assign a biological interpretation to the weights of a fitted ANN model, and (ii) ANNs are inherently instable, and very different networks can achieve similar prediction performance. Knowledge-primed neural networks (KPNNs, bottom row) enable interpretable deep learning on biological networks by exploiting structural analogies between biological networks (such as the signaling pathways and gene-regulatory networks that regulate cell state) and the feed-forward neural networks used for deep learning. In KPNNs, each network node corresponds to a protein or a gene, and each edge corresponds to a potential regulatory relationship that has been observed and annotated in public databases. Weights within the KPNN are obtained by a deep learning method that has been optimized for interpretability, and the learned weights are interpreted as estimates of the regulatory importance of the corresponding signaling protein or transcription factor
机译:可解释与知识引人入备的神经网络(KPNNS)的深入学习。深度学习提供了一种强大的方法,用于从基因表达谱预测细胞状态。然而,通用人工神经网络(ANNS,Top Row)是“黑匣子”,其熟悉了解成功预测的生物学 - 原因:(i)ANN中隐藏的节点和边缘没有生物等同物使其困难分配对装配ANN模型的权重的生物解释,并且(ii)ANN是固有的不稳定的,并且非常不同的网络可以实现类似的预测性能。知识引人注目的神经网络(KPNN,底行)通过利用生物网络(例如指导细胞状态的信号传导途径和基因 - 调节网络)和用于使用的前馈神经网络的结构类别来实现对生物网络的可解释深度学习。深度学习。在KPNN中,每个网络节点对应于蛋白质或基因,并且每个边缘对应于在公共数据库中观察和注释的潜在的调节关系。 KPNN内的重量是通过针对解释性优化的深度学习方法获得的,并且学习权重被解释为对应信令蛋白或转录因子的调节重要性的估计

著录项

  • 期刊名称 Genome Biology
  • 作者单位
  • 年(卷),期 2020(-1),-1
  • 年度 2020
  • 页码 -1
  • 总页数 36
  • 原文格式 PDF
  • 正文语种
  • 中图分类 生物学;
  • 关键词

    机译:深入学习;人工神经网络;单细胞测序;基因调节;细胞信号传导网络;功能基因组学;可解释的机器学习;生物信息建模;
  • 入库时间 2022-08-21 12:11:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号