首页> 美国卫生研究院文献>European Journal of Medical Research >Development of a quantitative segmentation model to assess the effect of comorbidity on patients with COVID-19
【2h】

Development of a quantitative segmentation model to assess the effect of comorbidity on patients with COVID-19

机译:一种定量分割模型的发展以评估合并症对Covid-19患者的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The general flow of Unet neural network to segment lung and lesions. Our neural network model was trained in the training dataset, and tested on test dataset. 550 CT images were split into primary dataset and 100 were primary dataset, respectively. First, CT images were inputted into this neural network to extract image features, segment lung, and lesion, and further classify whether the lesion was consolidation or GGO. The outputted results were the volumes of the lesions in underlying disease group and no underlying disease group
机译:杂交神经网络对肺和病变的一般流动。我们的神经网络模型在训练数据集中培训,并在测试数据集上进行测试。 550 CT图像分为主数据集,100分别为主要数据集。首先,将CT图像输入到该神经网络中以提取图像特征,分段肺和病变,并进一步分类病变是否是固结或GGO。产出结果是潜在疾病组病变的体积,疾病群体没有潜在的疾病组

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号