首页> 美国卫生研究院文献>Entropy >Application of Classification Algorithms to Diffuse Reflectance Spectroscopy Measurements for Ex Vivo Characterization of Biological Tissues
【2h】

Application of Classification Algorithms to Diffuse Reflectance Spectroscopy Measurements for Ex Vivo Characterization of Biological Tissues

机译:分类算法在生物组织蜕膜特征中的弥漫性光谱测量的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological tissue identification in real clinical scenarios is a relevant and unsolved medical problem, particularly in the operating room. Although it could be thought that healthy tissue identification is an immediate task, in practice there are several clinical situations that greatly impede this process. For instance, it could be challenging in open surgery in complex areas, such as the neck, where different structures are quite close together, with bleeding and other artifacts affecting visual inspection. Solving this issue requires, on one hand, a high contrast noninvasive technique and, on the other hand, powerful classification algorithms. Regarding the technique, optical diffuse reflectance spectroscopy has demonstrated such capabilities in the discrimination of tumoral and healthy biological tissues. The complex signals obtained, in the form of spectra, need to be adequately computed in order to extract relevant information for discrimination. As usual, accurate discrimination relies on massive measurements, some of which serve as training sets for the classification algorithms. In this work, diffuse reflectance spectroscopy is proposed, implemented, and tested as a potential technique for healthy tissue discrimination. A specific setup is built and spectral measurements on several ex vivo porcine tissues are obtained. The massive data obtained are then analyzed for classification purposes. First of all, considerations about normalization, detrending and noise are taken into account. Dimensionality reduction and tendencies extraction are also considered. Featured spectral characteristics, principal component or linear discrimination analysis are applied, as long as classification approaches based on k-nearest neighbors (k-NN), quadratic discrimination analysis (QDA) or Naïve Bayes (NB). Relevant parameters about classification accuracy are obtained and compared, including ANOVA tests. The results show promising values of specificity and sensitivity of the technique for some classification algorithms, even over 95%, which could be relevant for clinical applications in the operating room.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号