首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Mode Analysis of Pt/LGS Surface Acoustic Wave Devices
【2h】

Mode Analysis of Pt/LGS Surface Acoustic Wave Devices

机译:PT / LGS表面声波器件的模式分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Platinum (Pt) gratings on langasite (LGS) substrates are a widely used structures in high temperature surface acoustic wave (SAW) devices. Multiple modes can be excited in Pt/LGS SAW devices owing to the heavy weight of the Pt electrode and leaky waves in the LGS substrate. In this work, we report on a detailed mode analysis of Pt/LGS SAW devices, where three commonly used LGS cuts are considered. A three-dimensional (3D) finite element method (FEM) numerical model was developed, and the simulation and experiment results were compared. The experiment and simulation results showed that there are two modes excited in the Pt/LGS SAW devices with Euler angle (0°, 138.5°, 27°) and (0°, 138.5°, 117°), which are Rayleigh-type SAW and SH-type leaky wave, respectively. Only the Rayleigh-type mode was observed in the Pt/LGS SAW devices with Euler angle (0°, 138.5°, 72°). It was found that the acoustic velocities are dependent on the wavelength, which is attributed to the change of wave penetration depth in interdigital transducers (IDTs) and the velocity dispersion can be modulated by the thickness of the Pt electrode. We also demonstrated that addition of an Al2O3 passivation layer has no effect on the wave modes, but can increase the resonant frequencies. This paper provides a better understanding of the acoustic modes of Pt/LGS SAW devices, as well as useful guidance for device design. It is believed that the Rayleigh-type SAW and SH-type leaky waves are potentially useful for dual-mode sensing applications in harsh environments, to achieve multi-parameter monitoring or temperature-compensation on a single chip.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号