首页> 美国卫生研究院文献>Materials >A Facile and Scalable Approach in the Fabrication of Tailored 3D Graphene Foam via Freeze Drying
【2h】

A Facile and Scalable Approach in the Fabrication of Tailored 3D Graphene Foam via Freeze Drying

机译:通过冷冻干燥制造量身定制的3D石墨烯泡沫的易于和可扩展的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the challenges in the processing of advanced composite materials with 2D reinforcement is their extensive agglomeration in the matrix. 3D architecture of 2D graphene sheets into a Graphene Foam (GrF) assembly has emerged as an effective way to overcome agglomeration. The highly reticulated network of branches and nodes of GrF offers a seamless pathway for photon and electron conduction in the matrix along with improved mechanical properties. 3D GrF nano-filler is often fabricated by chemical vapor deposition (CVD) technique, which demands high energy, slow deposition rate, and restricting production to small scale. This work highlights freeze-drying (FD) technique to produce 3D graphene nanoplatelets (GNP) foam with a similar hierarchical structure to the CVD GrF. The FD technique using water as the main chemical in 3D GNP foam production is an added advantage. The flexibility of the FD in producing GNP foams of various pore size and morphology is elucidated. The simplicity with which one can engineer thermodynamic conditions to tailor the pore shape and morphology is presented here by altering the GNP solid loading and mold geometry. The FD 3D GNP foam is mechanically superior to CVD GrF as it exhibited 1280 times higher elastic modulus. However, thermal diffusivity of the FD GNP foam is almost 0.5 times the thermal diffusivity of the CVD GrF due to the defects in GNP particles and pore architecture. The versatility in GNP foam scalability and compatibility to form foam of other 1D and 2D material systems (e.g., carbon nanotubes, boron nitride nanotubes, and boron nitride nanoplatelets) brings a unique dimensionality to FD as an advanced engineering foam development process.
机译:加工具有2D增强材料的先进复合材料的挑战之一是它们在基质中的广泛附聚。将2D石墨烯片的3D架构成石墨烯泡沫(GRF)组件已成为克服聚集的有效方法。 GRF的高度网状网络和节点的节点提供了用于光子和基质中的电子传导的无缝通路,以及改善的机械性能。 3D GRF纳米填料通常通过化学气相沉积(CVD)技术制造,这需要高能量,慢沉积速率和限制生产到小规模。这项工作突出了冷冻干燥(FD)技术,以产生3D石墨烯纳米片(GNP)泡沫,其具有与CVD GRF相似的等级结构。使用水作为3D GNP泡沫生产主要化学品的FD技术是一个额外的优势。阐明了FD在生产各种孔径和形态的GNP泡沫中的灵活性。通过改变GNP固载荷和模具几何形状,在此提出了一种可以将热力学条件造成孔形状和形态的简单性。 FD 3D GNP泡沫机械地优于CVD GRF,因为它表现出1280倍的弹性模量。然而,由于GNP颗粒和孔结构的缺陷,FD GNP泡沫的热扩散性几乎是CVD GRF的热扩散率的0.5倍。 GNP泡沫可伸缩性的多功能性和形成其他1D和2D材料系统的泡沫的相容性(例如,碳纳米管,氮化硼纳米管和氮化硼纳米泊素)为FD作为先进的工程泡沫开发过程带来了独特的维数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号