首页> 外文期刊>Chemical engineering journal >Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods
【24h】

Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods

机译:通过组合固态剪切铣削和FDM 3D印刷对准方法,通过组合高热导电聚乙烯/石墨烯纳米膜复合材料的容纳和可伸缩的制造

获取原文
获取原文并翻译 | 示例
           

摘要

Polymer-based thermal conductive composites (PTCs) with both excellent thermal and mechanical properties are highly desirable in the thermal management of modern microelectronic industry. However, the enhancement efficiency for fillers loaded polymer composite is actually lower than the theoretically predicted value. The significant reasons could be due to the restriction of interfacial thermal resistance at filler-polymer matrix interfaces as well as the thermal conductive orientation dependence of anisotropic fillers. In the present study, solid-state shear milling ((SM)-M-3) strategy and FDM 3D-printing aligning technology were combined to synergistically improve thermal conductivity of linear low-density polyethylene (LLDPE)/graphene nanoplatelet (GNPs) nanocomposites. The fabricated FDM 3D-printed parts exhibit a significantly enhanced through-plane thermal conductivity up to 3.43 W m(-1) K-1 along printing direction compared to that of neat LLDPE (0.40 W m(-1) K-1) and also that of traditionally melt-compounded LLDPE/GNPs composites (1.98 W m(-1) K-1) at the same GNPs loading of 15.0 vol%. The enhanced thermal conductivity is attributed to the long-range aligned bridge-connected network structure of GNPs constructed in the PE matrix along printing direction due to the shear-inducing effect of FDM 3D-printing. Simultaneously, the (SM)-M-3 technology we adopted also reduces the interfacial thermal resistance and thus increases the thermal conductivity of the obtained nanocomposite, which was further demonstrated by the way of theoretical effective medium approximation (EMA) models we applied. The achieved high thermal conductivity and mechanical properties of the FDM 3D-printed LLDPE/GNPs thermal conductive parts suggest promising applications in the heat diffusion of some advanced electronic devices.
机译:在现代微电子工业的热管理中,非常希望具有优异的热和机械性能的基于聚合物的导热复合材料(PTC)。然而,填料的增强效率加载的聚合物复合材料实际上低于理论上预测值。显着原因可能是由于填充聚合物基质界面的界面热阻以及各向异性填料的导热取向依赖性的影响。在本研究中,组合固态剪切铣削((SM)-M-3)策略和FDM 3D印刷对准技术以协同提高线性低密度聚乙烯(LLDPE)/石墨烯纳米型(GNPS)纳米复合材料的导热率。与整齐的LLDPE(0.40W m(-1)k-1)和此外,传统上熔融复合的LLDPE / GNPS复合材料(1.98WM(-1)K-1),在15.0体积%的GNPS负载下。由于FDM 3D打印的剪切诱导效应,增强的导热性归因于在PE矩阵中构造的GNP的远程对准桥接网络结构。同时,我们采用的(SM)-M-3技术也降低了界面热阻,从而提高了所得纳米复合材料的导热率,这通过我们施加的理论有效介质近似(EMA)模型进一步证明。实现FDM 3D印刷LLDPE / GNPS热导电部件的高导热性和机械性能,提示了一些先进电子设备的热扩散中的有希望的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号