首页> 美国卫生研究院文献>Bioengineering Translational Medicine >In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering
【2h】

In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering

机译:原位形成微孔明胶甲基丙烯酰甲基水凝胶支架用于组织工程的热稳定微凝胶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Converting biopolymers to extracellular matrix (ECM)‐mimetic hydrogel‐based scaffolds has provided invaluable opportunities to design in vitro models of tissues/diseases and develop regenerative therapies for damaged tissues. Among biopolymers, gelatin and its crosslinkable derivatives, such as gelatin methacryloyl (GelMA), have gained significant importance for biomedical applications due to their ECM‐mimetic properties. Recently, we have developed the first class of in situ forming GelMA microporous hydrogels based on the chemical annealing of physically crosslinked GelMA microscale beads (microgels), which addressed several key shortcomings of bulk (nanoporous) GelMA scaffolds, including lack of interconnected micron‐sized pores to support on‐demand three‐dimensional‐cell seeding and cell–cell interactions. Here, we address one of the limitations of in situ forming microporous GelMA hydrogels, that is, the thermal instability (melting) of their physically crosslinked building blocks at physiological temperature, resulting in compromised microporosity. To overcome this challenge, we developed a two‐step fabrication strategy in which thermostable GelMA microbeads were produced via semi‐photocrosslinking, followed by photo‐annealing to form stable microporous scaffolds. We show that the semi‐photocrosslinking step (exposure time up to 90 s at an intensity of ~100 mW/cm2 and a wavelength of ~365 nm) increases the thermostability of GelMA microgels while decreasing their scaffold forming (annealing) capability. Hinging on the tradeoff between microgel and scaffold stabilities, we identify the optimal crosslinking condition (exposure time ~60 s) that enables the formation of stable annealed microgel scaffolds. This work is a step forward in engineering in situ forming microporous hydrogels made up from thermostable GelMA microgels for in vitro and in vivo applications at physiological temperature well above the gelatin melting point.
机译:将生物聚合物转化为细胞外基质(ECM) - 基于水凝胶的支架提供了无价的机会,可以设计组织/疾病的体外模型,并为受损组织开发再生疗法。在生物聚合物中,明胶及其可交联的衍生物,例如明胶甲基丙烯酰基(凝胶),由于其ECM模拟性质,对生物医学应用具有显着性的重要性。最近,我们开发了基于物理交联的Gelma微观珠粒(MicroGels)的化学退火的第一类原位形成凝胶微孔水凝胶,其解决了散装(纳米多孔)凝胶支架的几个关键缺点,包括缺乏相互连接的微米尺寸孔隙以支持按需三维细胞播种和细胞细胞相互作用。这里,我们地址原位形成微孔凝胶水凝胶的一个局限性,即它们物理交联的基层在生理温度下的热不稳定性(熔化),导致微孔孔隙受损。为了克服这一挑战,我们开发了一种两步的制造策略,其中通过半光源介绍产生热稳定的凝胶M微珠,然后通过光退火形成形成稳定的微孔支架。我们表明半光关键步骤(暴露时间高达90秒〜100mW / cm 2的强度和〜365nm的波长)增加了凝胶微凝胶的热稳定性,同时降低了它们的支架形成(退火)能力。在微凝电池和支架稳定之间的权衡上铰接,我们鉴定了能够形成稳定退火的微凝胶支架的最佳交联条件(暴露时间〜60s)。这项工作是在原位的工程中向前迈出的微孔水凝胶,其由热稳定的凝胶微凝胶在体外和体内应用中的生理温度良好地在明胶熔点高于明胶熔点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号