首页> 美国卫生研究院文献>Journal of Vision >Deep neural networks capture texture sensitivity in V2
【2h】

Deep neural networks capture texture sensitivity in V2

机译:深度神经网络在v2中捕获纹理敏感性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep convolutional neural networks (CNNs) trained on visual objects have shown intriguing ability to predict some response properties of visual cortical neurons. However, the factors (e.g., if the model is trained or not, receptive field size) and computations (e.g., convolution, rectification, pooling, normalization) that give rise to such ability, at what level, and the role of intermediate processing stages in explaining changes that develop across areas of the cortical hierarchy are poorly understood. We focused on the sensitivity to textures as a paradigmatic example, since recent neurophysiology experiments provide rich data pointing to texture sensitivity in secondary (but not primary) visual cortex (V2). We initially explored the CNN without any fitting to the neural data and found that the first two layers of the CNN showed qualitative correspondence to the first two cortical areas in terms of texture sensitivity. We therefore developed a quantitative approach to select a population of CNN model neurons that best fits the brain neural recordings. We found that the CNN could develop compatibility to secondary cortex in the second layer following rectification and that this was improved following pooling but only mildly influenced by the local normalization operation. Higher layers of the CNN could further, though modestly, improve the compatibility with the V2 data. The compatibility was reduced when incorporating random rather than learned weights. Our results show that the CNN class of model is effective for capturing changes that develop across early areas of cortex, and has the potential to help identify the computations that give rise to hierarchical processing in the brain (code is available in ).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号