首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Atomic Force Microscopy Imaging in Turbid Liquids: A Promising Tool in Nanomedicine
【2h】

Atomic Force Microscopy Imaging in Turbid Liquids: A Promising Tool in Nanomedicine

机译:浑浊液体中的原子力显微镜显像:纳米医生的有前途的工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tracking of biological and physiological processes on the nanoscale is a central part of the growing field of nanomedicine. Although atomic force microscopy (AFM) is one of the most appropriate techniques in this area, investigations in non-transparent fluids such as human blood are not possible with conventional AFMs due to limitations caused by the optical readout. Here, we show a promising approach based on self-sensing cantilevers (SSC) as a replacement for optical readout in biological AFM imaging. Piezo-resistors, in the form of a Wheatstone bridge, are embedded into the cantilever, whereas two of them are placed at the bending edge. This enables the deflection of the cantilever to be precisely recorded by measuring the changes in resistance. Furthermore, the conventional acoustic or magnetic vibration excitation in intermittent contact mode can be replaced by a thermal excitation using a heating loop. We show further developments of existing approaches enabling stable measurements in turbid liquids. Different readout and excitation methods are compared under various environmental conditions, ranging from dry state to human blood. To demonstrate the applicability of our laser-free bio-AFM for nanomedical research, we have selected the hemostatic process of blood coagulation as well as ultra-flat red blood cells in different turbid fluids. Furthermore, the effects on noise and scanning speed of different media are compared. The technical realization is shown (1) on a conventional optical beam deflection (OBD)-based AFM, where we replaced the optical part by a new SSC nose cone, and (2) on an all-electric AFM, which we adapted for measurements in turbid liquids.
机译:跟踪纳米级的生物和生理过程是纳米胺的生长领域的中心部分。尽管原子力显微镜(AFM)是该区域中最合适的技术之一,但由于光学读出引起的限制,传统的AFM不可能对诸如人类血液的非透明流体的研究。在这里,我们展示了一种基于自我传感悬臂(SSC)的有希望的方法,作为生物AFM成像中的光学读数的替代品。压电电阻,以惠斯通桥的形式嵌入到悬臂中,而其中两个被放置在弯曲边缘。这使得能够通过测量阻力的变化来精确地记录悬臂的偏转。此外,间歇接触模式中的传统声学或磁振动激发可以通过使用加热环的热激发代替。我们展示了现有方法的进一步发展,从而实现了浑浊液体中的稳定测量。在各种环境条件下比较不同的读数和激发方法,从干燥状态到人血。为了证明我们对纳米医疗研究的免疫生物AFM的适用性,我们选择了血液凝固的止血过程以及不同浑浊的超扁平红细胞。此外,比较了对不同介质的噪声和扫描速度的影响。在传统的光学束偏转(OBD)的AFM上示出了技术实现(1),在那里我们通过新的SSC鼻锥体更换了光学部分,并在全电气AFM上进行了(2),我们适用于测量在浑浊液体中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号