首页> 美国卫生研究院文献>Human Brain Mapping >Disordered directional brain network interactions during learning dynamics in schizophrenia revealed by multivariate autoregressive models
【2h】

Disordered directional brain network interactions during learning dynamics in schizophrenia revealed by multivariate autoregressive models

机译:多变量自回归模型揭示精神分裂症中学习动态期间的无序定向脑网络交互

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Directional network interactions underpin normative brain function in key domains including associative learning. Schizophrenia (SCZ) is characterized by altered learning dynamics, yet dysfunctional directional functional connectivity (dFC) evoked during learning is rarely assessed. Here, nonlinear learning dynamics were induced using a paradigm alternating between conditions (Encoding and Retrieval). Evoked fMRI time series data were modeled using multivariate autoregressive (MVAR) models, to discover dysfunctional direction interactions between brain network constituents during learning stages (Early vs. Late), and conditions. A functionally derived subnetwork of coactivated (healthy controls [HC] ∩ SCZ] nodes was identified. MVAR models quantified directional interactions between pairs of nodes, and coefficients were evaluated for intergroup differences (HC ≠ SCZ). In exploratory analyses, we quantified statistical effects of neuroleptic dosage on performance and MVAR measures. During Early Encoding, SCZ showed reduced dFC within a frontal–hippocampal–fusiform network, though during Late Encoding reduced dFC was associated with pathways the dorsolateral prefrontal cortex (dlPFC). During Early Retrieval, SCZ showed increased dFC in pathways to and from the dorsal anterior cingulate cortex, though during Late Retrieval, patients showed increased dFC in pathways the dlPFC, but decreased dFC in pathways the dlPFC. These discoveries constitute novel extensions of our understanding of task‐evoked dysconnection in schizophrenia and motivate understanding of the aspect of the dysconnection in schizophrenia. Disordered directionality should be investigated using computational psychiatric approaches that complement the MVAR method used in our work.
机译:方向网络交互在包括联想学习的关键域中的规范性大脑功能。精神分裂症(SCZ)的特征在于改变学习动态,然而,在学习期间诱捕的功能障碍定向功能连接(DFC)很少被评估。这里,使用条件(编码和检索)之间交替的范式来诱导非线性学习动态。诱发的FMRI时间序列数据使用多变量自回归(MVAR)模型进行了建模,在学习阶段(早期与晚期)和条件期间脑网络成分之间发现功能障碍方向相互作用。识别了CACTIVETED(健康控制[HC]∩SCZ]节点的功能衍生的子网。MVAR模型量化节点对之间的定向相互作用,评估系数进行互动差异(HC≠SCZ)。在探索性分析中,我们量化统计效应神经抑制剂量对性能和MVAR测量的影响。在早期编码期间,SCZ在前海马梭形网络中显示出降低的DFC,但在延迟编码期间,DFC与途径有关的Dorsolate Preveral Cortex(DLPFC)相关。在早期检索期间,SCZ显示患有背侧铰接皮质的途径增加了DFC,虽然在后期检索期间,患者在DLPFC的途径中表现出DFC的增加,但DLPFC的途径下降。这些发现构成了我们对精神分裂症中任务诱发的功能困难竞争的新延长并激发对精神分裂症伴有伴有的对伴有的问题的理解。应使用计算精神审查方法调整有序的方向性,这些方法补充我们工作中使用的MVAR方法。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号