首页> 美国卫生研究院文献>Translational Animal Science >The use of deep learning to automate the segmentation of the skeleton from CT volumes of pigs
【2h】

The use of deep learning to automate the segmentation of the skeleton from CT volumes of pigs

机译:使用深度学习自动从猪的CT体积中分割骨骼

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computed tomography ( ) scanning of pigs has been shown to produce detailed phenotypes useful in pig breeding. Due to the large number of individuals scanned and corresponding large data sets, there is a need for automatic tools for analysis of these data sets. In this paper, the feasibility of deep learning for fully automatic segmentation of the skeleton of pigs from CT volumes is explored. To maximize performance, given the training data available, a series of problem simplifications are applied. The deep-learning approach can replace our currently used semiautomatic solution, with increased robustness and little or no need for manual control. Accuracy was highly affected by training data, and expanding the training set can further increase performance making this approach especially promising.
机译:猪的计算机断层扫描()扫描已显示产生可用于猪育种的详细表型。由于扫描的个人数量众多且对应的数据集较大,因此需要用于分析这些数据集的自动工具。在本文中,探讨了深度学习从CT量自动分割猪骨骼的可行性。为了使性能最大化,给定可用的训练数据,将应用一系列简化的问题。深度学习方法可以取代我们目前使用的半自动解决方案,具有更高的鲁棒性,几乎不需要手动控制。训练数据会极大地影响准确性,并且扩展训练集可以进一步提高性能,从而使这种方法特别有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号