首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?
【2h】

Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

机译:磁性颗粒与生物流体的连续流分离:微器件几何形状如何确定分离性能?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of functionalized magnetic particles for the detection or separation of multiple chemicals and biomolecules from biofluids continues to attract significant attention. After their incubation with the targeted substances, the beads can be magnetically recovered to perform analysis or diagnostic tests. Particle recovery with permanent magnets in continuous-flow microdevices has gathered great attention in the last decade due to the multiple advantages of microfluidics. As such, great efforts have been made to determine the magnetic and fluidic conditions for achieving complete particle capture; however, less attention has been paid to the effect of the channel geometry on the system performance, although it is key for designing systems that simultaneously provide high particle recovery and flow rates. Herein, we address the optimization of Y-Y-shaped microchannels, where magnetic beads are separated from blood and collected into a buffer stream by applying an external magnetic field. The influence of several geometrical features (namely cross section shape, thickness, length, and volume) on both bead recovery and system throughput is studied. For that purpose, we employ an experimentally validated Computational Fluid Dynamics (CFD) numerical model that considers the dominant forces acting on the beads during separation. Our results indicate that rectangular, long devices display the best performance as they deliver high particle recovery and high throughput. Thus, this methodology could be applied to the rational design of lab-on-a-chip devices for any magnetically driven purification, enrichment or isolation.
机译:用于从生物流体中检测或分离多种化学物质和生物分子的功能化磁性颗粒的使用继续引起人们的极大关注。与目标物质一起孵育后,可磁珠回收,以进行分析或诊断测试。在过去的十年中,由于微流控技术的多重优势,在连续流微设备中使用永磁体进行颗粒回收一直备受关注。因此,为确定完全捕获粒子的磁场和流体条件付出了巨大的努力。然而,尽管对于设计同时提供高颗粒回收率和高流速的系统至关重要,但是对通道几何形状对系统性能的影响的关注却很少。在这里,我们解决了Y-Y形微通道的优化问题,在这些微通道中,磁珠从血液中分离出来,并通过施加外部磁场收集到缓冲液中。研究了几个几何特征(即截面形状,厚度,长度和体积)对珠粒回收率和系统通量的影响。为此,我们采用了经过实验验证的计算流体动力学(CFD)数值模型,该模型考虑了分离过程中作用于微珠上的主导力。我们的结果表明,矩形的长型设备显示出最佳的性能,因为它们可实现高颗粒回收率和高通量。因此,该方法学可以应用于任何电磁驱动的纯化,富集或分离的芯片实验室设备的合理设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号