首页> 美国卫生研究院文献>Human Brain Mapping >A geometric correction scheme for spatial leakage effects in MEG/EEG seed‐based functional connectivity mapping
【2h】

A geometric correction scheme for spatial leakage effects in MEG/EEG seed‐based functional connectivity mapping

机译:基于MEG / EEG种子的功能连接映射中的空间泄漏效应的几何校正方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spatial leakage effects are particularly confounding for seed‐based investigations of brain networks using source‐level electroencephalography (EEG) or magnetoencephalography (MEG). Various methods designed to avoid this issue have been introduced but are limited to particular assumptions about its temporal characteristics. Here, we investigate the usefulness of a model‐based geometric correction scheme (GCS) to suppress spatial leakage emanating from the seed location. We analyze its properties theoretically and then assess potential advantages and limitations with simulated and experimental MEG data (resting state and auditory‐motor task). To do so, we apply Minimum Norm Estimation (MNE) for source reconstruction and use variation of error parameters, statistical gauging of spatial leakage correction and comparison with signal orthogonalization. Results show that the GCS has a local (i.e., near the seed) effect only, in line with the geometry of MNE spatial leakage, and is able to map spatially all types of brain interactions, including linear correlations eliminated after signal orthogonalization. Furthermore, it is robust against the introduction of forward model errors. On the other hand, the GCS can be affected by local overcorrection effects and seed mislocation. These issues arise with signal orthogonalization too, although significantly less extensively, so the two approaches complement each other. The GCS thus appears to be a valuable addition to the spatial leakage correction toolkits for seed‐based FC analyses in source‐projected MEG/EEG data. . © .
机译:对于使用源级脑电图(EEG)或磁脑电图(MEG)进行的基于种子的脑网络研究,空间泄漏效应尤其令人困惑。已经介绍了旨在避免此问题的各种方法,但仅限于有关其时间特性的特定假设。在这里,我们研究了基于模型的几何校正方案(GCS)抑制从种子位置散发的空间泄漏的有用性。我们从理论上分析其特性,然后使用模拟和实验的MEG数据(静止状态和听觉运动任务)评估潜在的优势和局限性。为此,我们将最小范数估计(MNE)应用于源重构,并使用误差参数的变化,空间泄漏校正的统计量度以及与信号正交化的比较。结果表明,GCS仅具有局部(即接近种子)效应,与MNE空间泄漏的几何形状一致,并且能够在空间上映射所有类型的大脑相互作用,包括信号正交化后消除的线性相关性。此外,它对引入正向模型错误也很可靠。另一方面,GCS可能会受到局部过度校正效应和种子错位的影响。这些问题也出现在信号正交化中,尽管范围不大,所以这两种方法是相辅相成的。因此,对于源投影的MEG / EEG数据中基于种子的FC分析,GCS似乎是空间泄漏校正工具包的宝贵补充。 。 ©。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号