首页> 外文会议>IEEE International Symposium on Biomedical Imaging >ROBUST METHODS FOR RECONSTRUCTING BRAIN ACTIVITY AND FUNCTIONAL CONNECTIVITY BETWEEN BRAIN SOURCES WITH MEG/EEG DATA
【24h】

ROBUST METHODS FOR RECONSTRUCTING BRAIN ACTIVITY AND FUNCTIONAL CONNECTIVITY BETWEEN BRAIN SOURCES WITH MEG/EEG DATA

机译:用MEG / EEG数据重建大脑活动和脑源之间的功能连接的鲁棒方法

获取原文

摘要

The synchronous brain activity measured via magentoen-cephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm. Source localization remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. In addition, computational complexity has been an obstacle to computing functional connectivity. This paper derives an empirical Bayesian method for performing source localization with MEG and EEG data that includes noise and interference suppression. We demonstrate that this method surpasses standard methods of localization. In addition, we demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas.
机译:通过Magentoen-Cephalography(MEEG)或脑电图(EEG)测量的同步脑活动由位于整个皮质的当前偶极子中产生。使用源定位算法估计这些偶极子的数量,位置,时序和方向,称为源。源定位仍然是一个具有挑战性的任务,它是通过源相关性和干扰来自自发性脑活动和传感器噪声的干扰而显着复杂的任务。同样,评估称为功能连接的各个来源之间的相互作用,也通过传感器录制中的噪声和相关性混淆。此外,计算复杂性是计算功能连接的障碍。本文源于使用噪声和干扰抑制的MEG和EEG数据执行源定位的经验贝叶斯方法。我们证明该方法超越了定位的标准方法。此外,我们证明从该算法推断的脑源活动更适合于揭示大脑区域之间的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号