首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Adaptive-Cognitive Kalman Filter and Neural Network for an Upgraded Nondispersive Thermopile Device to Detect and Analyze Fusarium Spores
【2h】

Adaptive-Cognitive Kalman Filter and Neural Network for an Upgraded Nondispersive Thermopile Device to Detect and Analyze Fusarium Spores

机译:自适应认知卡尔曼滤波器和神经网络的升级型非分散热电堆装置用于检测和分析镰刀菌孢子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Noises such as thermal noise, background noise or burst noise can reduce the reliability and confidence of measurement devices. In this work, a recursive and adaptive Kalman filter is proposed to detect and process burst noise or outliers and thermal noise, which are popular in electrical and electronic devices. The Kalman filter and neural network are used to preprocess data of three detectors of a nondispersive thermopile device, which is used to detect and quantify Fusarium spores. The detectors are broadband (1 µm to 20 µm), (6.09 ± 0.06 µm) and (9.49 ± 0.44 µm) thermopiles. Additionally, an artificial neural network (NN) is applied to process background noise effects. The adaptive and cognitive Kalman Filter helps to improve the training time of the neural network and the absolute error of the thermopile data. Without applying the Kalman filter for thermopile, it took 12 min 09 s to train the NN and reach the absolute error of 2.7453 × 10 (n. u.). With the Kalman filter, it took 46 s to train the NN to reach the absolute error of 1.4374 × 10 (n. u.) for thermopile. Similarly, to the (9.49 ± 0.44 µm) thermopile, the training improved from 9 min 13 s to 1 min and the absolute error of 2.3999 × 10 (n. u.) to the absolute error of 1.76485 × 10 (n. u.) respectively. The three-thermopile system has proven that it can improve the reliability in detection of Fusarium spores by adding the broadband thermopile. The method developed in this work can be employed for devices that encounter similar noise problems.
机译:诸如热噪声,背景噪声或突发噪声之类的噪声会降低测量设备的可靠性和可信度。在这项工作中,提出了一种递归自适应卡尔曼滤波器,以检测和处理在电气和电子设备中流行的突发噪声或离群值和热噪声。卡尔曼滤波器和神经网络用于预处理非分散式热电堆设备的三个探测器的数据,该探测器用于探测和定量镰刀菌孢子。探测器是宽带(1 µm至20 µm),(6.09±0.06 µm)和(9.49±0.44 µm)热电堆。另外,将人工神经网络(NN)应用于处理背景噪声影响。自适应和认知卡尔曼滤波器有助于改善神经网络的训练时间和热电堆数据的绝对误差。在未将卡尔曼滤波器应用于热电堆的情况下,花了12分钟09 s来训练神经网络,并达到2.7453×10(n。u。)的绝对误差。使用卡尔曼滤波器,训练神经网络花费了46 s的时间来达到热电堆的绝对误差1.4374×10(n。u。)。类似地,对于(9.49±0.44 µm)热电堆,训练时间从9 min 13 s改进为1 min,绝对误差从2.3999×10(n。u。)分别提高到1.76485×10(n。u。)。三热电堆系统已证明,通过添加宽带热电堆可以提高镰刀菌孢子检测的可靠性。在这项工作中开发的方法可以用于遇到类似噪声问题的设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号