首页> 美国卫生研究院文献>Nanomaterials >Two-Phase Equilibrium Conditions in Nanopores
【2h】

Two-Phase Equilibrium Conditions in Nanopores

机译:纳米孔中的两相平衡条件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is known that thermodynamic properties of a system change upon confinement. To know how, is important for modelling of porous media. We propose to use Hill’s systematic thermodynamic analysis of confined systems to describe two-phase equilibrium in a nanopore. The integral pressure, as defined by the compression energy of a small volume, is then central. We show that the integral pressure is constant along a slit pore with a liquid and vapor in equilibrium, when Young and Young–Laplace’s laws apply. The integral pressure of a bulk fluid in a slit pore at mechanical equilibrium can be understood as the average tangential pressure inside the pore. The pressure at mechanical equilibrium, now named differential pressure, is the average of the trace of the mechanical pressure tensor divided by three as before. Using molecular dynamics simulations, we computed the integral and differential pressures, and , respectively, analysing the data with a growing-core methodology. The value of the bulk pressure was confirmed by Gibbs ensemble Monte Carlo simulations. The pressure difference times the volume, , is the subdivision potential of Hill, . The combined simulation results confirm that the integral pressure is constant along the pore, and that scales with the inverse pore width. This scaling law will be useful for prediction of thermodynamic properties of confined systems in more complicated geometries.
机译:众所周知,系统的热力学性质在限制时会改变。知道如何进行多孔介质建模很重要。我们建议使用Hill对受限系统的系统热力学分析来描述纳米孔中的两相平衡。这样,由小体积压缩能量定义的积分压力就处于中心位置。我们证明,当应用Young和Young-Laplace定律时,沿着狭缝孔的积分压力是恒定的,液体和蒸气处于平衡状态。在机械平衡时,狭缝孔中的整体流体的积分压力可以理解为孔内部的平均切向压力。机械平衡时的压力(现称为差压)是机械压力张量的迹线平均值除以三。使用分子动力学模拟,我们计算了积分压力和压差,并分别使用增长核方法对数据进行了分析。整体压力的值由吉布斯系综蒙特卡洛模拟确定。压差乘以体积,即为Hill的细分电位。组合的模拟结果证实,积分压力沿孔是恒定的,并且与孔的反宽度成比例。该缩放定律对于预测更复杂几何形状中的受限系统的热力学性质将很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号