首页> 美国卫生研究院文献>Biophysical Journal >A Thermodynamic Limit on the Role of Self-Propulsion in Enhanced Enzyme Diffusion
【2h】

A Thermodynamic Limit on the Role of Self-Propulsion in Enhanced Enzyme Diffusion

机译:在增强的酶扩散中自我推进作用的热力学极限。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A number of enzymes reportedly exhibit enhanced diffusion in the presence of their substrates, with a Michaelis-Menten-like concentration dependence. Although no definite explanation of this phenomenon has emerged, a physical picture of enzyme self-propulsion using energy from the catalyzed reaction has been widely considered. Here, we present a kinematic and thermodynamic analysis of enzyme self-propulsion that is independent of any specific propulsion mechanism. Using this theory, along with biophysical data compiled for all enzymes so far shown to undergo enhanced diffusion, we show that the propulsion speed required to generate experimental levels of enhanced diffusion exceeds the speeds of well-known active biomolecules, such as myosin, by several orders of magnitude. Furthermore, the minimal power dissipation required to account for enzyme enhanced diffusion by self-propulsion markedly exceeds the chemical power available from enzyme-catalyzed reactions. Alternative explanations for the observation of enhanced enzyme diffusion therefore merit stronger consideration.
机译:据报道,许多酶在其底物的存在下显示出增强的扩散,具有米氏(Michaelis-Menten)样浓度依赖性。尽管没有对该现象的确切解释,但人们广泛地考虑了利用来自催化反应的能量对酶进行自我推进的物理现象。在这里,我们提出了与任何特定推进机制无关的酶自我推进的运动学和热力学分析。使用这一理论,以及迄今为止为所有显示出增强扩散作用的所有酶编制的生物物理数据,我们表明,产生实验水平的增强扩散所需的推进速度比众所周知的活性生物分子(如肌球蛋白)的速度快了好几倍。数量级。此外,通过自我推进来解释酶增强的扩散所需的最小功率消耗明显超过了酶催化反应可获得的化学功率。因此,值得进一步考虑的是观察到的酶扩散增强的替代解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号