首页> 美国卫生研究院文献>Biophysical Journal >Coupling of Membrane Nanodomain Formation and Enhanced Electroporation near Phase Transition
【2h】

Coupling of Membrane Nanodomain Formation and Enhanced Electroporation near Phase Transition

机译:膜纳米域形成与增强的电穿孔相变附近的耦合。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological cells are enveloped by a heterogeneous lipid bilayer that prevents the uncontrolled exchange of substances between the cell interior and its environment. In particular, membranes act as a continuous barrier for salt and macromolecules to ensure proper physiological functions within the cell. However, it has been shown that membrane permeability strongly depends on temperature and, for phospholipid bilayers, displays a maximum at the transition between the gel and fluid phase. Here, extensive molecular dynamics simulations of dipalmitoylphosphatidylcholine bilayers were employed to characterize the membrane structure and dynamics close to phase transition, as well as its stability with respect to an external electric field. Atomistic simulations revealed the dynamic appearance and disappearance of spatially related nanometer-sized thick ordered and thin interdigitating domains in a fluid-like bilayer close to the phase transition temperature ( ). These structures likely represent metastable precursors of the ripple phase that vanished at increased temperatures. Similarly, a two-phase bilayer with coexisting gel and fluid domains featured a thickness minimum at the interface because of splaying and interdigitating lipids. For all systems, application of an external electric field revealed a reduced bilayer stability with respect to pore formation for temperatures close to . Pore formation occurred exclusively in thin interdigitating membrane nanodomains. These findings provide a link between the increased membrane permeability and the structural heterogeneity close to phase transition.
机译:生物细胞被异质脂质双层包裹,该双层脂质阻止了细胞内部与其环境之间物质的不受控制的交换。尤其是,膜充当盐和大分子的连续屏障,以确保细胞内适当的生理功能。然而,已经表明,膜的渗透性强烈地取决于温度,并且对于磷脂双层,其在凝胶和流体相之间的转变处显示出最大值。在这里,对二棕榈酰磷脂酰胆碱双分子层进行了广泛的分子动力学模拟,以表征膜结构和接近相变的动力学及其相对于外部电场的稳定性。原子模拟揭示了在接近相变温度()的流体状双层中,与空间相关的纳米级厚有序和薄指状畴的动态出现和消失。这些结构可能代表了波纹相的亚稳态前驱物,该前驱物在升高的温度下消失。类似地,由于脂质的张开和相互交叉,具有凝胶域和流体域共存的两相双层在界面处的厚度最小。对于所有系统,外加电场的施加都表明在温度接近时,双层的稳定性相对于孔的形成降低了。孔形成仅发生在相互交叉的薄膜纳米域中。这些发现提供了增加的膜渗透性和接近相变的结构异质性之间的联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号