首页> 美国卫生研究院文献>Annals of Translational Medicine >Statistical methods and models in the analysis of time to event data
【2h】

Statistical methods and models in the analysis of time to event data

机译:事件发生时间分析中的统计方法和模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Time to event data are common in medical research, where outcomes are the time until the occurrence of an event of interest that are subject to censoring. The main goal for the analysis of time to event data is to investigate the effects of covariates on the hazard for an event of interest and estimate the survival probability. The article by Zhou ( ) provides a nice overview on building a clinical prediction model on time to event data and assessing the prediction accuracy of a clinical prediction model, describing the model construction and model validation using R functions ( ). The article introduces the Cox proportional hazards model ( ) as a clinical prediction model for time to event data, which is the most widely used statistical model in studies of time to event data to estimate the effects of covariates on the hazard for an event of interest, and describes visualizing the survival probability for a patient with specific values of covariates using nomogram with R. The article also introduces R code to compute the concordance index (i.e., C-index) and draw a calibration plot to evaluate the discriminatory and calibration accuracy of a Cox regression model. However, the limitation of the article is that the authors did not describe about checking the proportional hazards assumption. In practice, the proportional hazards assumption may not be plausible for some applications. Thus, it is necessary to assess the proportionality assumption since a violation of the assumption may affect statistical inference. The most commonly used approaches for checking the assumption are to use a test based on the Schoenfeld residuals ( ), and draw the Schoenfeld residuals plot ( ) and the curves ( ), where is the Kaplan-Meier estimator ( ). A test based on the Schoenfeld residuals can be conducted using the function cox.zph() in survival package in R, which provides a two-sided P value for the test under the null hypothesis of proportionality. If a P value is less than the prespecified significance level, it indicates a violation of the proportionality assumption. The Schoenfeld residuals plot can be drawn using the function cox.zph() in R. When a covariate is continuous, if a plot of Schoenfeld residuals versus times for the covariate shows patterns other than a constant, it indicates that there is a departure from the proportionality assumption for the covariate. As another graphical check, a plot of versus log(time) can be used to investigate the assumption. If the curves for each of the levels of a covariate are parallel, it indicates that the proportional hazards assumption holds for the covariate. When the proportional hazards assumption does not hold for some covariates, other regression models may be used to estimate the effects of covariates on the hazard function for an event of interest. For example, an additive hazards model ( - ) or accelerated failure time model ( - ) can be used as alternatives to the proportional hazards model.
机译:事件时间数据在医学研究中很常见,结果是直到发生要审查的关注事件为止的时间。分析事件发生时间数据的主要目标是研究协变量对关注事件的危害的影响并估计生存概率。 Zhou()的文章很好地概述了如何根据事件数据及时建立临床预测模型,并评估临床预测模型的预测准确性,描述了使用R函数()进行的模型构建和模型验证。本文介绍了Cox比例风险模型()作为事件发生时间数据的临床预测模型,它是事件发生时间数据研究中使用最广泛的统计模型,用于估计相关事件对危害的协变量影响,并描述了使用诺模图和R可视化具有特定协变量值的患者的生存概率。文章还介绍了R代码以计算一致性指数(即C指数)并绘制校准图以评估鉴别和校准准确性Cox回归模型但是,本文的局限性在于作者没有描述检查比例风险假设。在实践中,比例风险假设对于某些应用可能并不合理。因此,有必要评估比例假设,因为违反该假设可能会影响统计推断。检查假设的最常用方法是使用基于Schoenfeld残差()的检验,并绘制Schoenfeld残差图()和曲线(),其中Kaplan-Meier估计量()。可以使用R中的生存程序包中的函数cox.zph()进行基于Schoenfeld残差的检验,该检验在比例无效的假设下为检验提供了一个双面P值。如果P值小于预定的显着性水平,则表示违反了比例假设。可以使用R中的函数cox.zph()绘制Schoenfeld残差图。当协变量是连续的时,如果Schoenfeld残差相对于协变量的时间的图显示出除常数以外的其他模式,则表明存在偏离协变量的比例假设。作为另一种图形检查,可以使用对数(时间)图来研究假设。如果协变量每个水平的曲线平行,则表明比例风险假设适用于协变量。当比例风险假设对于某些协变量不成立时,可以使用其他回归模型来估计感兴趣事件的协变量对危害函数的影响。例如,可以将加性危害模型(-)或加速故障时间模型(-)用作比例危害模型的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号