首页> 美国卫生研究院文献>other >Multivariate Analysis and Geovisualization with an Integrated Geographic Knowledge Discovery Approach
【2h】

Multivariate Analysis and Geovisualization with an Integrated Geographic Knowledge Discovery Approach

机译:集成地理知识发现方法进行多元分析和地理可视化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The discovery, interpretation, and presentation of multivariate spatial patterns are important for scientific understanding of complex geographic problems. This research integrates computational, visual, and cartographic methods together to detect and visualize multivariate spatial patterns. The integrated approach is able to: (1) perform multivariate analysis, dimensional reduction, and data reduction (summarizing a large number of input data items in a moderate number of clusters) with the Self-Organizing Map (SOM); (2) encode the SOM result with a systematically designed color scheme; (3) visualize the multivariate patterns with a modified Parallel Coordinate Plot (PCP) display and a geographic map (GeoMap); and (4) support human interactions to explore and examine patterns. The research shows that such “mixed initiative” methods (computational and visual) can mitigate each other’s weakness and collaboratively discover complex patterns in large geographic datasets, in an effective and efficient way.
机译:多元空间模式的发现,解释和表示对于科学理解复杂的地理问题非常重要。这项研究将计算,视觉和制图方法整合在一起,以检测和可视化多元空间格局。该集成方法能够:(1)使用自组织映射(SOM)进行多元分析,降维和数据归约(在中等数量的集群中汇总大量输入数据项); (2)使用系统设计的配色方案对SOM结果进行编码; (3)通过修改后的平行坐标图(PCP)显示和地理地图(GeoMap)可视化多元模式; (4)支持人与人之间的互动,以探索和检验模式。研究表明,这种“混合主动”方法(计算和视觉方法)可以缓解彼此的弱点,并以有效和高效的方式协作发现大型地理数据集中的复杂模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号