首页> 美国卫生研究院文献>other >Interaction of lithotripter shockwaves with single inertial cavitation bubbles
【2h】

Interaction of lithotripter shockwaves with single inertial cavitation bubbles

机译:碎石机冲击波与单个惯性空化气泡的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave–bubble interaction are discussed.
机译:研究了冲击波(建模为压力脉冲)与最初的球形振荡气泡之间的动态相互作用。在冲击波冲击下,气泡发生非球面形变,并使用边界元方法(BEM)根据势流理论确定气泡周围的流场。这种方法的主要优点是其计算效率。重复模拟过程,直到气泡表面的两个相对侧彼此碰撞(即沿冲击波传播方向形成射流)。计算气泡的破裂时间,气泡的形状和喷射速度。此外,基于水锤压力理论估计冲击压力。还确定了开尔文脉冲,动能和气泡位移(全部在喷射冲击时)。总体而言,模拟结果与碎石机冲击波与单个气泡相互作用(使用激光在不同振荡阶段产生的气泡)的实验观察结果相比具有优势。该模拟证实了实验观察结果,即在收缩阶段,当气泡的塌陷时间大约等于冲击波的压缩脉冲持续时间时,中等尺寸的气泡会发生最剧烈的塌陷,具有最高的射流速度和冲击压力。 。在这种情况下,入射冲击波的最大能量转移到了破裂的气泡上。此外,还讨论了气泡含量(具有不同初始压力的理想气体)和气泡初始条件(初始振荡与非振荡)对冲击波-气泡相互作用动力学的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号