首页> 美国卫生研究院文献>other >Functional and Mechanistic Analyses of Biomimetic Aminoacyl Transfer Reactions in de novo Designed Coiled Coil Peptides via Rational Active Site Engineering
【2h】

Functional and Mechanistic Analyses of Biomimetic Aminoacyl Transfer Reactions in de novo Designed Coiled Coil Peptides via Rational Active Site Engineering

机译:通过合理的活性位点工程从头设计的卷曲螺旋肽中仿生氨基酰基转移反应的功能和机理分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ribosomes and nonribosomal peptide synthetases (NRPSs) carry out instructed peptide synthesis through a series of directed intermodular aminoacyl transfer reactions. We recently reported the design of coiled-coil assemblies that could functionally mimic the elementary aminoacyl loading and intermodular aminoacyl transfer steps of NRPSs. These peptides were designed initially to accelerate aminoacyl transfer mainly through catalysis by approximation by closely juxtaposing four active site moieties, two each from adjacent noncovalently-associated helical modules. In our designs peptide self-assembly positions a cysteine residue that is used to covalently capture substrates from solution via transthiolesterification (substrate loading step to generate the aminoacyl donor site) adjacent to an aminoacyl acceptor site provided by a covalently tethered amino acid or modeled by the ε-amine of an active site lysine. However, through systematic functional analyses of 48 rationally designed peptide sequences, we have now determined that the substrate loading and intermodular aminoacyl transfer steps can be significantly influenced (up to ~103-fold) by engineering changes in the active site microenvironment through amino acid substitutions and variations in the inter-residue distances and geometry. Mechanistic studies based on 15N-NMR and kinetic analysis further indicate that certain active site constellations furnish an unexpectedly large pKa depression (1.5 pH units) of the aminoacyl-acceptor moiety, helping to explain the observed high rates of aminoacyl transfer in those constructs. Taken together, our studies demonstrate the feasibility of engineering efficient de novo peptide sequences possessing active sites and functions reminiscent of those in natural enzymes.
机译:核糖体和非核糖体肽合成酶(NRPS)通过一系列定向的模块间氨基酰基转移反应进行指导的肽合成。我们最近报道了盘绕线圈组件的设计,该组件可以在功能上模拟NRPS的基本氨基酰基负载和模块间氨基酰基转移步骤。这些肽最初被设计成主要通过紧密地并置四个活性位点部分(各自来自相邻的非共价缔合的螺旋模块中的两个)进行近似催化来加速氨酰基转移。在我们的设计中,肽的自组装位置是一个半胱氨酸残基,该残基用于通过共硫键氨基酸提供的氨酰基受体位点附近的反式硫代酯化作用(从底物加载步骤生成氨酰基供体位点)共价捕获溶液中的底物,或通过活性位点赖氨酸的ε-胺。但是,通过对48个合理设计的肽序列进行系统功能分析,我们现在已经确定,底物的上载和模块间氨基酰基转移步骤会受到工程改造的影响(至多〜10 3 -倍)。通过氨基酸取代以及残基间距离和几何形状的变化来激活活性位点微环境。基于 15 N-NMR和动力学分析的机理研究进一步表明,某些活性位点构象会给氨酰基受体部分带来意想不到的大pKa抑制(1.5 pH单位),有助于解释观察到的高发生率这些构建物中的氨酰基转移。两者合计,我们的研究表明,工程改造有效的从头肽序列具有活性位点和功能让人想起天然酶中的功能的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号