首页> 美国卫生研究院文献>other >Perspective on Diabatic Models of Chemical Reactivity as Illustrated by the Gas-Phase SN2 Reaction of Acetate Ion with 12-Dichloroethane
【2h】

Perspective on Diabatic Models of Chemical Reactivity as Illustrated by the Gas-Phase SN2 Reaction of Acetate Ion with 12-Dichloroethane

机译:乙酸离子与12-二氯乙烷气相SN2反应说明化学反应的绝热模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Diabatic models are widely employed for studying chemical reactivity in condensed phases and enzymes, but there has been little discussion of the pros and cons of various diabatic representations for this purpose. Here we discuss and contrast six different schemes for computing diabatic potentials for a charge rearrangement reaction. They include (i) the variational diabatic configurations (VDC) constructed by variationally optimizing individual valence bond structures and (ii) the consistent diabatic configurations (CDC) obtained by variationally optimizing the ground-state adiabatic energy, both in the nonorthogonal molecular orbital valence bond (MOVB) method, along with the orthogonalized (iii) VDC-MOVB and (iv) CDC-MOVB models. In addition, we consider (v) the fourfold way (based on diabatic molecular orbitals and configuration uniformity), and (vi) empirical valence bond (EVB) theory. To make the considerations concrete, we calculate diabatic electronic states and diabatic potential energies along the reaction path that connects the reactant and the product ion-molecule complexes of the gas-phase bimolecular nucleophilic substitution (SN2) reaction of 1,2-dichloethane (DCE) with acetate ion, which is a model reaction corresponding to the reaction catalyzed by haloalkane dehalogenase. We utilize ab initio block-localized molecular orbital theory to construct the MOVB diabatic states and ab initio multi-configuration quasidegenerate perturbation theory to construct the fourfold-way diabatic states; the latter are calculated at reaction path geometries obtained with the M06-2X density functional. The EVB diabatic states are computed with parameters taken from the literature. The MOVB and fourfold-way adiabatic and diabatic potential energy profiles along the reaction path are in qualitative but not quantitative agreement with each other. In order to validate that these wave-function-based diabatic states are qualitatively correct, we show that the reaction energy and barrier for the adiabatic ground state, obtained with these methods, agree reasonably well with the results of high-level calculations using the composite G3SX and G3SX(MP3) methods and the BMC-CCSD multi-coefficient correlation method. However, a comparison of the EVB gas-phase adiabatic ground-state reaction path with those obtained from MOVB and with the fourfold way reveals that the EVB reaction path geometries show a systematic shift towards the products region, and that the EVB lowest-energy path has a much lower barrier. The free energies of solvation and activation energy in water reported from dynamical calculations based on EVB also imply a low activation barrier in the gas phase. In addition, calculations of the free energy of solvation using the recently proposed SM8 continuum solvation model with CM4M partial atomic charges lead to an activation barrier in reasonable agreement with experiment only when the geometries and the gas-phase barrier are those obtained from electronic structure calculations, i.e., methods i–v. These comparisons show the danger of basing the diabatic states on molecular mechanics without the explicit calculation of electronic wave functions. Furthermore, comparison of schemes i–v with one another shows that significantly different quantitative results can be obtained by using different methods for extracting diabatic states from wave function calculations, and it is important for each user to justify the choice of diabatization method in the context of its intended use.
机译:绝热模型被广泛用于研究凝聚相和酶中的化学反应性,但是为此目的,很少有讨论各种绝热表示形式的利弊的讨论。在这里,我们讨论并对比了六个不同的方案,用于计算电荷重排反应的绝热势能。它们包括(i)通过可变优化单个价键结构构建的变异绝热构型(VDC)和(ii)通过可变优化基态绝热能量获得的一致非绝热构型(CDC),均在非正交分子轨道价键中(MOVB)方法,以及正交化(iii)VDC-MOVB和(iv)CDC-MOVB模型。此外,我们考虑(v)四重方式(基于非绝热分子轨道和构型均匀性),以及(vi)经验价键(EVB)理论。为了使考虑更加具体,我们沿连接反应物与1,2-二氯乙烷(DCE)气相双分子亲核取代(SN2)反应的产物离子-分子复合物的反应路径计算了非绝热电子态和非绝热势能)和乙酸根离子,这是与卤代烷脱卤酶催化的反应相对应的模型反应。我们利用从头开始的块局部化分子轨道理论来构建MOVB的非绝热态,并利用从头开始的多构型准生成微扰理论来构建四向绝热态。后者是根据使用M06-2X密度函数获得的反应路径几何形状计算的。 EVB的非绝热态是根据文献中的参数计算得出的。 MOVB以及沿着反应路径的四向绝热和绝热势能曲线在质性上彼此定量一致。为了验证这些基于波函数的非绝热态在质量上是正确的,我们证明了用这些方法获得的绝热基态的反应能和势垒与使用复合材料进行的高级计算的结果相当吻合G3SX和G3SX(MP3)方法以及BMC-CCSD多系数相关方法。但是,将EVB气相绝热基态反应路径与从MOVB获得的气相绝热基态反应路径和四重方式进行比较后发现,EVB反应路径的几何结构显示了向产物区域的系统转移,并且EVB最低能量路径具有较低的障碍。根据基于EVB的动力学计算报告的水中的溶剂化自由能和活化能也暗示着气相中的活化势垒较低。此外,仅当几何结构和气相势垒是通过电子结构计算获得的时,使用最近提出的带有CM4M部分原子电荷的SM8连续溶剂化模型来计算溶剂化的自由能会导致与实验合理吻合的活化势垒,即方法i–v。这些比较表明,在没有显式计算电子波函数的情况下,将非绝热态基于分子力学的危险。此外,方案i–v的相互比较表明,通过使用不同的方法从波动函数计算中提取非绝热态可以得到截然不同的定量结果,并且对于每个用户而言,在背景下选择绝热方法是很重要的其预期用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号