首页> 美国卫生研究院文献>other >The Somatostatin Analog SOM230 (Pasireotide) Ameliorates Injury of the Intestinal Mucosa and Increases Survival after Total-Body Irradiation by Inhibiting Exocrine Pancreatic Secretion
【2h】

The Somatostatin Analog SOM230 (Pasireotide) Ameliorates Injury of the Intestinal Mucosa and Increases Survival after Total-Body Irradiation by Inhibiting Exocrine Pancreatic Secretion

机译:生长抑素模拟sOm230(帕瑞肽)肠黏膜损伤改善和全身放疗后增加存活通过抑制外分泌胰液分泌

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Somatostatin analogs ameliorate intestinal injury after localized irradiation. This study investigated whether SOM230, a novel, metabolically stable analog with broad receptor affinity, reduces intestinal injury and lethality in mice exposed to total-body irradiation (TBI). Male CD2F1 mice were exposed to 7–15 Gy TBI. Twice-daily administration of SOM230 (1, 4 or 10 mg/kg per day) or vehicle was started either 2 days before or 4 h after TBI and continued for either 14 or 21 days. Parameters of intestinal and hematopoietic radiation injury, bacterial translocation, and circulating cytokine levels were assessed. Animal survival was monitored for up to 30 days. SOM230 increased survival (P < 0.001) and prolonged survival time (P < 0.001) whether administration was initiated before or after TBI. There was no benefit from administration for 21 compared to 14 days. The survival benefit of SOM230 was completely reversed by co-administration of pancreatic enzymes (P = 0.009). Consistent with the presumed non-cytoprotective mechanism of action, SOM230 did not influence hematopoietic injury or intestinal crypt lethality. However, SOM230 preserved mucosal surface area (P < 0.001) and reduced bacterial translocation in a dose-dependent manner (P < 0.001). Circulating IL-12 levels were reduced in SOM230-treated mice (P = 0.007). No toxicity from SOM230 was observed. SOM230 enhances animal survival whether administration begins before or after TBI; i.e., it is effective both as a protector and as a mitigator. The mechanism likely involves reduction of intraluminal pancreatic enzymes. Because of its efficacy and favorable safety profile, SOM230 is a promising countermeasure against radiation and should undergo further development.

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号