首页> 美国卫生研究院文献>other >A NOVEL SURFACE-BASED GEOMETRIC APPROACH FOR 3D DENDRITIC SPINE DETECTION FROM MULTI-PHOTON EXCITATION MICROSCOPY IMAGES
【2h】

A NOVEL SURFACE-BASED GEOMETRIC APPROACH FOR 3D DENDRITIC SPINE DETECTION FROM MULTI-PHOTON EXCITATION MICROSCOPY IMAGES

机译:FOR 3D树突棘检测一种新的基于表面的几何方法通过多光子激发显微镜图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Determining the relationship between the dendritic spine morphology and its functional properties is a fundamental while challenging problem in neurobiology research. In particular, how to accurately and automatically analyze meaningful structural information from a large microscopy image dataset is far away from being resolved. In this paper, we propose a novel method for the automated neuron reconstruction and spine detection from fluorescence microscopy images. After image processing, backbone of the neuron is obtained and the neuron is represented as a 3D surface. Based on the analysis of geometric features on the surface, spines are detected by a novel hybrid of two segmentation methods. Besides the automated detection of spines, our algorithm is able to extract accurate 3D structures of spines. Comparison results between our approach and the state of the art shows that our algorithm is more accurate and robust, especially for detecting and separating touching spines.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号