首页> 美国卫生研究院文献>other >Activation of latent transforming growth factor-β1 by nitric oxide in macrophages: Role of soluble guanylate cyclase and MAP kinases
【2h】

Activation of latent transforming growth factor-β1 by nitric oxide in macrophages: Role of soluble guanylate cyclase and MAP kinases

机译:潜转化生长因子β1的活化一氧化氮在巨噬细胞:可溶性鸟苷酸环化酶和map激酶的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The inducible nitric oxide (NO) synthase and the cytokine transforming growth factor-β1 (TGF-β1), both central modulators of wound healing, interact reciprocally: TGF-β1 generally suppresses iNOS expression, while NO can induce and activate latent TGF-β1. We have shown that chemical NO activates recombinant human latent TGF-β1 by S-nitrosation of the latency-associated peptide (LAP), a cleaved portion of pro-TGF-β1 that maintains TGF-β1 in a biologically-inactive state. We hypothesized that cell-associated TGF-β1 could be activated by NO via known NO-inducible signaling pathways (soluble guanylate cyclase [sGC] and mitogen-activated protein [MAP] kinases). Treatment of mouse RAW 264.7 macrophage-like cells with the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) led to a dose- and time-dependent increase in cell-associated active and latent TGF-β1, as assessed by quantitative immunocytochemistry for active TGF-β1 vs. LAP and partially validated by western blot analysis. Treatment with the sGC inhibitor 1,H-[1,2,4]oxadiazole[4,3-a]quinoxalon-1-one (ODQ) reduced both active and latent TGF-β1 dose-dependently. SNAP, in the presence or absence of ODQ or the MAP kinase inhibitors, did not affect steady-state TGF-β1 mRNA levels. Treatment with inhibitors specific for JNK1/2, ERK1/2, and p38 MAP kinases suppressed SNAP-induced active and latent TGF-β1. Treatment with the cell-permeable cGMP analog 8-Br-cGMP increased both active and latent TGF-β1. However, TGF-β1 activation induced by 8-Br-cGMP was not blocked by MAP kinase inhibitors. Our findings suggest that NO activates latent TGF-β1 via activation of sGC and generation of cGMP and separately via MAP kinase activation, and may shed insight into the mechanisms by which both cGMP production and MAP kinase activation enhance wound healing.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号