首页> 美国卫生研究院文献>other >Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson’s disease
【2h】

Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson’s disease

机译:神经元NOS和环氧氢止酶-2有助于帕金森病的小鼠模型中的DNA损伤

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

DNA damage is a proposed pathogenic factor in neurodegenerative disorders such as Parkinson’s disease. To probe the underpinning mechanism of such neuronal perturbation, we sought to produce an experimental model of DNA damage. We thus first assessed by in situ nick translation and emulsion autoradiography in the mouse brain the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 4 × 20mg/kg, i.p., every 2 hours), a neurotoxin known to produce a model of Parkinson’s disease, on DNA. Here we show that DNA strand breaks occur in vivo in this mouse model of Parkinson’s disease with kinetics and a topography that parallel the degeneration of substantia nigra neurons, as assessed by FluoroJade-labeling. Previously, nitric oxide synthase (NOS) and cyclooxygenase-2 (Cox-2) were found to modulate MPTP-induced dopaminergic neuronal death. We thus assessed the contribution of these enzymes to DNA damage in mice lacking either neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), or Cox-2. We found that the lack of Cox-2 and of nNOS, but not of iNOS activity, attenuate MPTP-related DNA damage. We also found that not only nuclear, but mitochondrial DNA as well is a target for the MPTP insult. These results suggest that the loss of genomic integrity can be triggered by the concerted actions of nNOS and Cox-2, and provide further support to the view that DNA damage may contribute to the neurodegenerative process in PD.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号