首页> 美国卫生研究院文献>other >Comprehensive integrated spirometry using raised volume passive and forced expirations and multiple-breath nitrogen washout in infants
【2h】

Comprehensive integrated spirometry using raised volume passive and forced expirations and multiple-breath nitrogen washout in infants

机译:综合集成肺活量测定法使用募集体积被动和强制呼气和婴幼儿多呼吸氮气冲洗

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the rapid somatic growth and development in infants, simultaneous accurate measurements of lung volume and airway function are essential. Raised volume rapid thoracoabdominal compression (RTC) is widely used to generate forced expiration from an airway opening pressure of 30 cm H2O (V30). The (dynamic) functional residual capacity (FRCdyn) remains the lung volume most routinely measured. The aim of this study was to develop comprehensive integrated spirometry that included all subdivisions of lung volume at V30 or total lung capacity (TLC30). Measurements were performed on seventeen healthy infants aged 8.6–119.7 weeks. A commercial system for multiple-breath nitrogen washout (MBNW) to measure lung volumes and a custom made system to perform RTC were used in unison. A refined automated raised volume RTC and the following two novel single maneuvers with dual volume measurements were performed from V30 during a brief post-hyperventilation apneic pause: (1) the passive expiratory flow was integrated to produce the inspiratory capacity (IC) and the static (passive) FRC (FRCst) was estimated by initiating MBNW after end-passive expiration; (2) RTC was initiated late during passive expiration, flow was integrated to produce the slow vital capacity (jSVC) and the residual volume (RV) was measured by initiating MBNW after end-expiration while the jacket (j) was inflated. Intrasubject FRCdyn and FRCst measurements overlapped (p= 0.6420) but neither did with the RV (p<0.0001). Means (95% confidence interval) of FRCdyn, IC, FRCst, jSVC, RV, forced vital capacity and tidal volume were 21.2 (19.7–22.7), 36.7 (33.0–40.4), 21.2 (19.6–22.8), 40.7 (37.2–44.2), 18.1 (16.6–19.7), 40.7 (37.1–44.2) and 10.2 (9.6–10.7) ml/kg, respectively. Static lung volumes and capacities at V30 and variables from the best forced expiratory flow-volume curve were dependent on age, body length and weight. In conclusion, we developed a comprehensive physiologically-integrated approach for in-depth investigation of lung function at V30 in infants.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号