首页> 美国卫生研究院文献>other >Rapid induction of therapeutic hypothermia using convective-immersion surface cooling: Safety efficacy and outcomes
【2h】

Rapid induction of therapeutic hypothermia using convective-immersion surface cooling: Safety efficacy and outcomes

机译:使用对流浸泡表面冷却快速诱导治疗性低温:安全性疗效和结果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Therapeutic hypothermia has become an accepted part of post-resuscitation care. Efforts to shorten the time from return of spontaneous circulation to target temperature have led to the exploration of different cooling techniques. Convective-immersion uses a continuous shower of 2°C water to rapidly induce hypothermia. The primary purpose of this multi-center trial was to evaluate the feasibility and speed of convective-immersion cooling in the clinical environment. The secondary goal was to examine the impact of rapid hypothermia induction on patient outcome.24 post-cardiac arrest patients from 3 centers were enrolled in the study; 22 agreed to participate until the 6-month evaluations were completed. The median rate of cooling was 3.0°C/h. Cooling times were shorter than reported in previous studies. The median time to cool the patients to target temperature (<34°C) was 37 min (range 14–81 min); and only 27 min in a subset of patients sedated with propofol. Survival was excellent, with 68% surviving to 6 months; 87% of survivors were living independently at 6 months.Conductive-immersion surface cooling using the ThermoSuit® System is a rapid, effective method of inducing therapeutic hypothermia. Although the study was not designed to demonstrate impact on outcomes, survival and neurologic function were superior to those previously reported, suggesting comparative studies should be undertaken. Shortening the delay from return of spontaneous circulation to hypothermic target temperature may significantly improve survival and neurologic outcome and warrants further study.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号