首页> 美国卫生研究院文献>other >Functionalization of Fibers Using Azlactone-Containing Polymers: Layer-by-Layer Fabrication of Reactive Thin Films on the Surfaces of Hair and Cellulose-Based Materials
【2h】

Functionalization of Fibers Using Azlactone-Containing Polymers: Layer-by-Layer Fabrication of Reactive Thin Films on the Surfaces of Hair and Cellulose-Based Materials

机译:使用含含唑酮的聚合物的纤维的官能化:逐层制造在头发和纤维素的材料表面上的反应性薄膜的制造

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report an approach to the functionalization of fibers and fiber-based materials that is based on the deposition of reactive azlactone-functionalized polymers and the ‘reactive’ layer-by-layer assembly of azlactone-containing thin films. We demonstrate (i) that the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) can be used to modify the surfaces of a model protein-based fiber (horsehair) and cellulose-based materials (e.g., cotton and paper), and (ii) that fibers functionalized in this manner can be used to support the fabrication of covalently crosslinked and reactive polymer multilayers assembled using PVDMA and poly(ethyleneimine) (PEI). The growth, chemical reactivity, and uniformity of films deposited on these substrates were characterized using fluorescence microscopy, confocal microscopy, and scanning electron microscopy (SEM). In addition to the direct functionalization of fibers, we demonstrate that the residual azlactone functionality in PVDMA-treated or film-coated fibers can be exploited to chemically modify the surface chemistry and physicochemical properties of fiber-based materials post-fabrication using amine functionalized molecules. For example, we demonstrate that this approach permits control over the surface properties of paper (e.g., absorption of water) by simple post-fabrication treatment of film-coated paper with the hydrophobic amine n-decylamine. The azlactone functionality present in these materials provides a platform for the modification of polymer-treated and film-coated fibers with a broad range of other chemical and biological species (e.g., enzymes, peptides, catalysts, etc.). The results of this investigation thus provide a basis for the functionalization of fibers and fiber-based materials (e.g., textile fabrics or non-woven mats) of potential utility in a broad range of consumer, industrial, and biomedical contexts.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号