首页> 美国卫生研究院文献>other >Nano-Imprinted Thin Films of Reactive Azlactone-Containing Polymers: Combining Methods for the Topographic Patterning of Cell Substrates with Opportunities for Facile Post-Fabrication Chemical Functionalization
【2h】

Nano-Imprinted Thin Films of Reactive Azlactone-Containing Polymers: Combining Methods for the Topographic Patterning of Cell Substrates with Opportunities for Facile Post-Fabrication Chemical Functionalization

机译:活性的纳米印制的薄膜吖内酯 - 含氯聚合物:结合的细胞基质的地形图案与机遇简易后期制作化学功能方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Approaches to the fabrication of surfaces that combine methods for the topographic patterning of soft materials with opportunities for facile, post-fabrication chemical functionalization could contribute significantly to advances in biotechnology and a broad range of other areas. Here, we report methods that can be used to introduce well-defined nano- and microscale topographic features to thin films of reactive polymers containing azlactone functionality using nano-imprint lithography (NIL). We demonstrate that NIL can be used to imprint topographic patterns into thin films of poly(2-vinyl-4,4-dimethylazlactone) and a copolymer of methyl methacrylate and 2-vinyl-4,4-dimethylazlactone using silicon masters having patterns of grooves and ridges ranging in width from 400 nm to 2 μm, demonstrating the potential of this method to transfer patterns to films of these reactive polymers over a range of feature sizes and densities. We demonstrate further that the azlactone functionality of these polymers survives temperatures and pressures associated with NIL, and that topographically patterned films can be readily functionalized post-fabrication by treatment of surface-accessible azlactone functionality with small molecules and polymers containing primary amines. The results of experiments in which NIH-3T3 cells were seeded onto films imprinted with lined patterns having a pitch of 4 μm demonstrated that cells attach and proliferate on these azlactone-containing films and that they align in the direction of the imprinted pattern. Finally, we demonstrate that the treatment of these materials with amine-functionalized poly(ethylene glycol) (PEG) can be used to create regions of topographically patterned films that prevent cell adhesion. The results of this study suggest approaches to the functionalization of topographically patterned surfaces with a broad range of chemical functionality (e.g., peptides, proteins, carbohydrates, etc.) of biotechnological interest. The ability to manipulate and define both the physical topography and chemical functionality of these reactive materials could provide opportunities to investigate the combined effects of substrate topography and chemical functionality on cell behavior and may also be useful in a broad range of other applications.

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号