首页> 美国卫生研究院文献>other >Substitution of Adenovirus Serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor X binding decreases liver tropism and improves anti-tumor efficacy
【2h】

Substitution of Adenovirus Serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor X binding decreases liver tropism and improves anti-tumor efficacy

机译:将腺病毒血清型3己酮替代到血清型5上溶血性腺病毒降低因子x结合降低肝脏抗肿瘤提高抗肿瘤效果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Following intravascular delivery, an important route of administration for many clinical applications, the liver is the predominant site of adenovirus serotype 5 (Ad5) sequestration thereby posing a risk of toxicity. In this regard, it has recently been demonstrated that the Ad5 capsid binds to the blood coagulation factor X (FX) via the Ad5 hexon protein. This interaction mediates the majority of Ad5 liver transduction. Patient FX levels can be diminished by the administration of warfarin, a vitamin K inhibitor in the liver which decreases FX production; however, warfarin is a potent anticoagulant and can have a number of undesired side effects. Therefore, genetic modification of the virus to ablate FX binding is the preferred approach. Modifications of the hexon protein, specifically within the hypervariable 5 (HVR5) and 7 (HVR7) regions, have produced Ad5 vectors that show minimal liver sequestration. Our laboratory has pioneered adenovirus hexon modifications, including insertion of peptide ligands into the hypervariable regions and substitution of the adenovirus hexon with hexon proteins from alternate serotypes. Substitution of the adenovirus serotype 3 (Ad3) hexon protein onto the Ad5 capsid has been further characterized in regard to its interaction with FX and incorporated into an infectivity enhanced conditionally replicative adenovirus (CRAd). In vitro evaluation of these hexon modified vectors demonstrated decreased binding to FX and decreased cell transduction via FX mediated pathways. Furthermore, in vivo biodistribution studies in mice exhibited a decrease in liver sequestration. Utilizing xenograft tumor models, anti-tumor efficacy of the hexon-modified CRAds was enhanced over non-modified controls.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号