首页> 美国卫生研究院文献>other >Angular Synchronization by Eigenvectors and Semidefinite Programming
【2h】

Angular Synchronization by Eigenvectors and Semidefinite Programming

机译:角度同步的特征值和半定规划

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The angular synchronization problem is to obtain an accurate estimation (up to a constant additive phase) for a set of unknown angles θ1, …, θn from m noisy measurements of their offsets θi − θj mod 2π. Of particular interest is angle recovery in the presence of many outlier measurements that are uniformly distributed in [0, 2π) and carry no information on the true offsets. We introduce an efficient recovery algorithm for the unknown angles from the top eigenvector of a specially designed Hermitian matrix. The eigenvector method is extremely stable and succeeds even when the number of outliers is exceedingly large. For example, we successfully estimate n = 400 angles from a full set of m=(4002) offset measurements of which 90% are outliers in less than a second on a commercial laptop. The performance of the method is analyzed using random matrix theory and information theory. We discuss the relation of the synchronization problem to the combinatorial optimization problem Max-2-Lin mod L and present a semidefinite relaxation for angle recovery, drawing similarities with the Goemans-Williamson algorithm for finding the maximum cut in a weighted graph. We present extensions of the eigenvector method to other synchronization problems that involve different group structures and their applications, such as the time synchronization problem in distributed networks and the surface reconstruction problems in computer vision and optics.

著录项

  • 期刊名称 other
  • 作者

    A. Singer;

  • 作者单位
  • 年(卷),期 -1(30),1
  • 年度 -1
  • 页码 20–36
  • 总页数 34
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号