首页> 美国卫生研究院文献>Journal of Digital Imaging >A New Blood Vessel Extraction Technique Using Edge Enhancement and Object Classification
【2h】

A New Blood Vessel Extraction Technique Using Edge Enhancement and Object Classification

机译:利用边缘增强和对象分类的新血管提取技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Diabetic retinopathy (DR) is increasing progressively pushing the demand of automatic extraction and classification of severity of diseases. Blood vessel extraction from the fundus image is a vital and challenging task. Therefore, this paper presents a new, computationally simple, and automatic method to extract the retinal blood vessel. The proposed method comprises several basic image processing techniques, namely edge enhancement by standard template, noise removal, thresholding, morphological operation, and object classification. The proposed method has been tested on a set of retinal images. The retinal images were collected from the DRIVE database and we have employed robust performance analysis to evaluate the accuracy. The results obtained from this study reveal that the proposed method offers an average accuracy of about 97 %, sensitivity of 99 %, specificity of 86 %, and predictive value of 98 %, which is superior to various well-known techniques.
机译:糖尿病性视网膜病(DR)逐渐增加,从而推动了对疾病严重程度的自动提取和分类的需求。从眼底图像中提取血管是一项至关重要的任务。因此,本文提出了一种新的,计算简单且自动的提取视网膜血管的方法。所提出的方法包括几种基本的图像处理技术,即通过标准模板的边缘增强,噪声去除,阈值化,形态学运算和对象分类。所提出的方法已经在一组视网膜图像上进行了测试。视网膜图像是从DRIVE数据库中收集的,我们采用了可靠的性能分析来评估准确性。从这项研究中获得的结果表明,所提出的方法提供的平均准确度约为97%,灵敏度为99%,特异性为86%,预测值为98%,优于各种众所周知的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号