首页> 美国卫生研究院文献>other >Targeting TLR4 Signaling by TLR4 TIR-derived Decoy Peptides: Identification of the TLR4 TIR Dimerization Interface
【2h】

Targeting TLR4 Signaling by TLR4 TIR-derived Decoy Peptides: Identification of the TLR4 TIR Dimerization Interface

机译:通过TLR4 TIR衍生的诱饵肽定位TLR4信号传导:识别TLR4 TIR二聚体界面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Agonist-induced dimerization of TLR4 TIR domains initiates intracellular signaling. Therefore, identification of the TLR4 TIR dimerization interface is one key to the rational design of therapeutics that block TLR4 signaling. A library of cell-permeating “decoy peptides,” each of which represents a non-fragmented patch of the TLR4 TIR surface, was designed such that the peptides entirely encompass the TLR4 TIR surface. Each peptide was synthesized in tandem with a cell-permeating Antennapedia homeodomain sequence and tested for the ability to inhibit early cytokine mRNA expression and MAPK activation in LPS-stimulated primary murine macrophages. Five peptides, 4R1, 4R3, 4BB, 4R9, and 4αE, potently inhibited all manifestations of TLR4, but not TLR2 signaling. When tested for their ability to bind directly to TLR4 TIR by FRET using time-resolved fluorescence spectroscopy, Bodipy-TMR-X (BTX)-labeled 4R1, 4BB, and 4αE quenched fluorescence of TLR4-Cerulean (Cer) expressed in HeLa or HEK293T cells, while 4R3 was partially active and 4R9 was least active. These findings suggest that the area between BB loop of TLR4 and its fifth helical region mediates TLR4 TIR dimerization. Moreover, our data provide direct evidence for the utility of the “decoy peptide approach,” in which peptides representing various surface-exposed segments of a protein are initially probed for the ability to inhibit protein function and then their specific targets are identified by FRET, to define recognition sites in signaling proteins that may be targeted therapeutically to disrupt functional transient protein interactions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号