首页> 美国卫生研究院文献>other >Development of appropriate equations for physiologically based pharmacokinetic modeling of permeability-limited and flow-limited transport
【2h】

Development of appropriate equations for physiologically based pharmacokinetic modeling of permeability-limited and flow-limited transport

机译:基于生理学药代动力学建模的适当方程的开发 - 限流和流量有限的运输

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although the implementation of a flow-limited, well-stirred tank (WST) single-compartment tissue model in pharmacokinetics and toxicokinetics is widespread, its use is not always justified biophysically or physiologically. The WST model introduces a loss of biophysical detail, specifically the vascular space, which is present in the standard permeability-limited two-subcompartment (PLT) tissue model. To address this loss of detail when evaluating the in vivo kinetics of drugs, toxins, nutrients, and endogenous metabolites, a novel set of physiologically based pharmacokinetic tissue compartment equations is developed through application of an asymptotic approximation to a two-region vascular–extravascular system to arrive at a permeability-limited two-region asymptotically reduced (P-TAR) model and a flow-limited (F-TAR) model. Development of the TAR modeling approach illustrates the importance of relative timescales in PBPK tissue compartment model selection and the conditions under which improved biophysical realism is advantageous. In the permeability-limited regime, the TAR model formulations enable drug or toxicant concentration to be modeled in the vascular and extravascular spaces equivalent to the PLT tissue model while invoking only one state variable to represent the vascular and extravascular spaces. In the flow-limited regime, the F-TAR model is more biophysically realistic than the WST model because it maintains the anatomical distinction between the vascular and extravascular spaces, and hence offers greater pharmacological and physiological insight than the WST model, without introducing additional computational complexity.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号