首页> 美国卫生研究院文献>other >Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multi-walled carbon nanotubes
【2h】

Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multi-walled carbon nanotubes

机译:在暴露于官能化多壁碳纳米管的雄性瑞士韦伯斯特小鼠中的肝毒性和氧化应激研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Carbon nanotubes (CNTs), the most promising material with unique characteristics, find its application in different fields ranging from composite materials to medicine and from electronics to energy storage. However, little is known about the mechanisms behind the interaction of these particles with cells and their toxicity. The aim of this study was to assess the effects, after intraperitoneal injection, of functionalized multi walled carbon nanotubes (MWCNT) (carboxyl groups) on various hepatotoxicity and oxidative stress biomarkers (ROS, LHP, ALT, AST, ALP and morphology of liver) in the mouse model. The mice were dosed intraperitoneally at 0.25, 0.5 & 0.75 mg/kg/day for 5 days of purified/functionalized MWCNTs and two controls (negative; saline and positive; carbon black 0.75 mg/kg) as appropriate. Samples were collected 24 hours after the fifth day treatment following standard protocols. Exposure to carboxylated functionalized MWCNT; the body-weight gain of the mice decreased, induced reactive oxygen species (ROS), and enhanced the activities of serum amino-transferases (ALT/AST), alkaline phosphatases (ALP) and concentration of lipid hydro peroxide compared to control. Histopathology of exposed liver showed a statistically significant effect in the morphological alterations of the tissue compared to controls. The cellular findings reported here do suggest that purified carboxylated functionalized MWCNT has the potential to induce hepatotoxicity in Swiss-Webster mice through activation of the mechanisms of oxidative stress, which warrant in vivo animal exposure studies. However, more studies of functionalization in the in vivo toxicity of MWCNTs are required and parallel comparison is preferred.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号