首页> 美国卫生研究院文献>other >Factors Influencing the DNA Nuclease Activity of Iron Cobalt Nickel and Copper Chelates
【2h】

Factors Influencing the DNA Nuclease Activity of Iron Cobalt Nickel and Copper Chelates

机译:影响铁钴镍和铜螯合物DNA核酸酶活性的因素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A library of complexes that included iron, cobalt, nickel, and copper chelates of cyclam, cyclen, DOTA, DTPA, EDTA, tripeptide GGH, tetrapeptide KGHK, NTA, and TACN was evaluated for DNA nuclease activity, ascorbate consumption, superoxide and hydroxyl radical generation, and reduction potential under physiologically relevant conditions. Plasmid DNA cleavage rates demonstrated by combinations of each complex and biological coreactants were quantified by gel electrophoresis, yielding second-order rate constants for DNAsupercoiled to DNAnicked conversion up to 2.5 ×106 M-1min-1, and for DNAnicked to DNAlinear up to 7 ×105 M-1min-1. Relative rates of radical generation and characterization of radical species were determined by reaction with the fluorescent radical probe TEMPO-9-AC and rhodamine B. Ascorbate turnover rate constants ranging from 9.1×10-3 to 8.2 min-1 were determined, although many complexes demonstrated no measureable activity. Inhibition and Freifelder-Trumbo analysis of DNA cleavage supported concerted cleavage of dsDNA by a metal associated ROS in the case of Cu2+(aq), Cu-KGHK, Co-KGHK, and Cu-NTA and stepwise cleavage for Fe2+(aq), Cu-cyclam, Cu-cyclen, Co-cyclen, Cu-EDTA, Ni-EDTA, Co-EDTA, Cu-GGH, and Co-NTA. Reduction potentials varied over the range from -362 mV to +1111 mV versus NHE, and complexes demonstrated optimal catalytic activity in the range of the physiological redox coreactants ascorbate and peroxide (-66 to +380 mV).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号