首页> 美国卫生研究院文献>other >Atomic resolution dynamics on the surface of amyloid β protofibrils probed by solution NMR
【2h】

Atomic resolution dynamics on the surface of amyloid β protofibrils probed by solution NMR

机译:β淀粉样蛋白原纤维的表面上原子级的分辨率动态探测通过溶液NmR

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Exchange dynamics between molecules free in solution and bound to the surface of a large supramolecular structure, a polymer, a membrane or solid support are important in many phenomena in biology and material science. Here we present a novel and generally applicable solution NMR technique, known as Dark-state Exchange Saturation Transfer (DEST), to probe such exchange phenomena with atomic resolution. This is illustrated by the exchange reaction between amyloid β (Aβ) monomers and polydisperse, NMR invisible ('dark') protofibrils, a process of significant interest since the accumulation of toxic, aggregated forms of Aβ, from small oligomers to very large assemblies, have been implicated in the etiology of Alzheimer's disease. The 15N-DEST experiment imprints with single residue resolution dynamic information on the protofibril-bound species in the form of 15N transverse relaxation rates (15N-R2) and exchange kinetics between monomers and protofibrils onto the easily observed two-dimensional 1H-15N correlation spectrum of the monomer. The exchanging species on the protofibril surface comprise an ensemble of sparsely-populated states where each residue is either tethered to (via other residues) or in direct contact with the surface. The first eight residues exist predominantly in a mobile tethered state`, while the largely hydrophobic central region and part of the C-terminal hydrophobic region are in direct contact with the protofibril surface for a significant proportion of the time. The C-terminal residues of both Aβ40 and Aβ42 display lower affinity for the protofibril surface indicating that they are likely to be surface exposed rather than buried as in structures of Aβ fibrils, and may therefore comprise the critical nucleus for fibril formation,. The N15R2tethered values, however, are significantly larger for the C-terminal residues of Aβ42 than Aβ40 which may explain the former’s higher propensity for rapid aggregation and fibril formation,.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号