首页> 美国卫生研究院文献>other >Structural Insight into the Role of the Human Melanocortin 3 Receptor Cysteine Residues on Receptor Function
【2h】

Structural Insight into the Role of the Human Melanocortin 3 Receptor Cysteine Residues on Receptor Function

机译:结构洞察于人黑色主酶3受体半胱氨酸残基对受体功能的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Melanocortin-3 receptor (MC3R), expressed in the hypothalamus and limbic systems of the brain, as well as by peripheral sites, plays an important role in the regulation of energy homeostasis and other physiological functions. Past work shows that MC3R-deficiency resulted in fat mass increase, feeding efficiency increase, hyperleptinemia and mild hyperinsulinemia in mice and human. MC3R belongs to G-protein coupled receptor (GPCR) family and many studies indicate that some cysteine residues in GPCR play key roles in maintaining receptor tertiary structure and function. In this study, we examined the role of cysteine residues in MC3R on receptor function. Human MC3R (hMC3R) has eighteen cysteine residues where they are located in the extracellular loops (ELs), the transmembrane domains (TMs) and the intracellular loops (ILs). We replaced these cysteines with serine and expressed these receptors in HEK-293 cells which lack endogenous MC3R. Our results indicate that five cysteines in eighteen of the hMC3R are important for hMC3R function. Mutations, C305S, C311S, and C313S in EL3, resulted in significant decrease in receptor expression and receptor function while two other mutations C115S and C162S in TM3 significantly decreased NDP-MSH binding affinity and potency. These results suggest that extracellular cysteine residue 305, 311 and 313 are crucial for receptor expression and the transmembrane cysteine residue, C115 and 162 are important for ligand binding and signaling. These findings provide important insights into the importance of cysteine residues of hMC3R on receptor tertiary structure and function.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号