首页> 美国卫生研究院文献>other >Oxygen-Glucose Deprivation (OGD) and Interleukin-1 (IL-1) Differentially Modulate Cathepsin B/L Mediated Generation of Neuroprotective Perlecan LG3 by Neurons
【2h】

Oxygen-Glucose Deprivation (OGD) and Interleukin-1 (IL-1) Differentially Modulate Cathepsin B/L Mediated Generation of Neuroprotective Perlecan LG3 by Neurons

机译:氧气 - 葡萄糖剥夺(OGD)和白细胞介素-1(IL-1)通过神经元差异调节组织蛋白酶B / L介导的神经保护蛋白酶的生成神经元

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Brain extracellular matrix (ECM) is highly degraded after cerebral ischemia. The perlecan c-terminal fragment LG3 is generated at increased levels by proteolytic processing as long as 3 days after ischemia. It has previously been shown that oxygen-glucose deprivation (OGD), reperfusion and interleukin-1 α (IL-1α) stimulate brain cells to yield increased levels of LG3. This LG3, in turn, is neuroprotective against OGD, and may therefore represent one of the brain's defenses against ischemic injury. Here, we investigate whether, in neurons, this increased LG3 is the result of increased perlecan generation and cellular release, increased protease release (to generate LG3 from previous extracellularly deposited perlecan) or both. We found that pre-synthesized perlecan may be exocytosed by neurons during OGD and de novo synthesis of perlecan is increased during reperfusion, even 24 h after OGD. Furthermore, while cathepsin L activity was seen to be marginally important to generate LG3 during normoxic conditions, cathepsin B activity was found to be important to generate increased levels of LG3 following OGD and reperfusion. On the other hand, IL-1α treatment raised levels of cathepsin L in neuronal media, and both cathepsin L and cathepsin B were demonstrated to be important for increasing LG3 levels after IL-1α treatment.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号